

Расходомер-счетчик ультразвуковой УРМ

Руководство по монтажу, эксплуатации и техническому обслуживанию

У.045000 РЭ

Все права сохранены. Любое тиражирование данной документации, в том числе выборочно, независимо от метода, запрещается без предварительного письменного разрешения компании ООО «ГРУППА КОМПАНИЙ УЛЬТРА».

Право на внесение изменения без предварительного извещения сохраняется. Подлежит изменениям без уведомления.

Авторское право 2025 г. ООО «ГРУППА КОМПАНИЙ УЛЬТРА»

2

Содержание —

1 Описание и работа	7
1.1 Назначение расходомера	7
1.2 Метрологические и технические характеристики	7
1.3 Состав расходомера	
1.4 Электрические подключения	13
1.5 Габаритные размеры	15
1.6 Комплектность	16
1.7 Маркировка	16
1.8 Пломбирование	
1.9 Упаковка	
2 Использование по назначению	19
2.1 Эксплуатационные ограничения	19
3 Подготовка расходомера к использованию	24
3 Подготовка расходомера к использованию3.1 Меры безопасности при подготовке расходомера	24 24
 3 Подготовка расходомера к использованию	24 24 24
 3 Подготовка расходомера к использованию	24 24 24 24 25
 3 Подготовка расходомера к использованию	24 24 24 25 26
 3 Подготовка расходомера к использованию	24 24 24 25 26 31
 3 Подготовка расходомера к использованию	
 3 Подготовка расходомера к использованию	
 3 Подготовка расходомера к использованию	24 24 24 25 26 31 34 34
 3 Подготовка расходомера к использованию	24 24 24 25 26 31 34 34 35
 3 Подготовка расходомера к использованию	
 3 Подготовка расходомера к использованию	24 24 24 25 26 31 34 34 34 35 59
 3 Подготовка расходомера к использованию	24 24 24 25 26 31 34 34 34 35 59 65 80

— Содержание —

5 Техническое обслуживание	90
5.1 Общие сведения	90
5.2 Демонтаж расходомера	90
5.3 Очистка поверхностей расходомера, контактирующих со средой	90
5.4 Возможность получения запасных частей	91
5.5 Возможность оказания сервисных услуг	91
5.6 Указания о поверке расходомера	91
5.7 Возврат расходомера изготовителю	91
5.8 Процедура по аварийному отключению	93
5.9 Программное обеспечение	93
6 Хранение	95
7 Транспортирование	96
9 Утилизация	97
Список используемых сокращений	98
заметки	00

Информация

Предупреждения относительно безопасного пользования обозначаются следующими символами

Опасность!

Настоящая информация относится к непосредственным рискам при работе с электричеством.

Опасность!

В обязательном порядке соблюдайте данные предупреждения. Даже частичное несоблюдение этого предупреждающего знака может повлечь за собой серьезный ущерб здоровью вплоть до летального исхода. Кроме того, имеет место риск возникновения серьезных неисправностей самого измерительного прибора, либо элементов технических сооружений и технологического оборудования пользователя.

§.

Информация!

Данные указания содержат важную информацию по погрузочно-разгрузочным работам, переноске и обращению с прибором.

Официальное уведомление!

Настоящее примечание содержит информацию по законодательно установленным предписаниям и стандартам.

Обращение с прибором

Данный символ обозначает все указания к действиям и операциям, которые пользователю надлежит выполнять в определенной предписанной последовательности.

Введение

Данное руководство предназначено для:

- изучения устройства и работы расходомеров-счетчиков ультразвуковых УРМ (далее расходомеры),
- монтажа расходомеров,
- правильного использования расходомеров во время эксплуатации, а также поверки.

Расходомеры поставляются готовыми к работе. Заводские настройки рабочих параметров выполнены в соответствии с данными заказа.

Ответственность за соответствие заявленным техническим условиям эксплуатации расходомера и за надлежащее использование данных расходомеров несет исключительно пользователь.

К работе с расходомером допускаются лица, изучившие РЭ, прошедшие инструктаж и сдавшие экзамен по технике безопасности при работе с электрооборудованием.

Допуск к самостоятельной работе персонала должен осуществляться на основании документального оформления результатов проведенного обучения и тренинга.

Неправильная установка и, как следствие, эксплуатация расходомеров могут привести к потере гарантии.

При необходимости возврата расходомеров на предприятие-изготовитель ООО «УЛЬТРА-АВТОМАТИКА», необходимо заполнить формуляр, приведенный в разделе 5.7.2 данного руководства. Ремонт или наладка производятся только в случае, если копия данного формуляра заполнена полностью возвращена вместе расходомером И С на предприятие-изготовитель ООО «УЛЬТРА-АВТОМАТИКА».

Гарантия может быть отменена в случае несоблюдения требований данного руководства.

1 Описание и работа

1.1 Назначение расходомера

Расходомеры-счетчики ультразвуковые УРМ (далее – расходомеры) предназначены для измерения расхода и накопленного объема воды в прямом и обратном (реверсивном) направлениях расхода в системах водоснабжения при выполнении технологических и учетно-расчетных операций.

Расходомеры характеризуются возможностью измерения объема и расхода в прямом и обратном (реверсивном) направлении потока.

Номинальные диаметры трубопроводов - от DN15 до DN1000.

1.2 Метрологические и технические характеристики

1.2.1 Основные метрологические характеристики расходомеров

Основные метрологические характеристики расходомеров приведены в таблице 1 и 2.

Таблица 1 – Диапазон измерений объемного расхода жидкости

	Значение расхода, м ³ /ч в зависимости от скорости					
номинальный диаметр	Минимальное значение Q _{min}	При v=0,1 м/с	При v=0,28 м/с	При v=1,0 м/с	При v=5,0 м/с	Максимальное значение Q _{max}
DN15	0,06	0,06	0,18	0,64	3,18	10 (8,9)
DN25	0,11	0,18	0,49	1,77	8,84	27 (16,4)
DN32	0,17	0,29	0,81	2,90	14,5	43 (25,3)
DN40	0,27	0,45	1,27	4,52	22,6	68 (40,2)
DN50	0,42	0,71	1,98	7,07	35,3	106 (62,6)
DN65	0,72	1,19	3,34	11,9	59,7	179 (107,3)
DN80	1,09	1,81	5,07	18,1	90,5	271 (162,4)
DN100	1,7	2,83	7,9	28,3	141,4	424 (253,3)
DN125	2,65	4,42	12,4	44,2	220,9	663 (394,8)
DN150	3,18	6,36	17,8	63 <i>,</i> 6	318,1	954 (473,8)
DN200	5,65	11,3	31,7	113,1	565,5	1696 (842)
DN250	8,83	17,7	49,5	176,7	883,6	2651 (1316)
DN300	12,7	25,4	71,3	254,5	1272	3817 (1892)
DN350	17,3	34,6	97,0	346,4	1732	5195 (2578)
DN400	22,6	45,2	126,7	452,4	2262	6786 (3367)
DN450	28,6	57,3	160,3	572,6	2863	8588 (4261)
DN500	35,3	70,7	197,9	706,9	3534	10600 (5260)
DN600	50,9	101,8	285,0	1018	5089	15270 (7584)
DN700	69,2	138,5	387,9	1385	6927	20780 (10311)
DN800	90,4	181,0	506,7	1810	9048	27140 (13470)
DN900	114	229,0	641,3	2290	11451	34350 (16986)
DN1000	141	282,7	791,7	2827	14137	42410 (21009)
Примечание — значения Q _{max} в скобках для исполнения Т						

— Описание и работа

Таблица 2 – Погрешность измерений

Наименование характеристики		Значение			
Класс точности		КТО,3	КТ0,5	KT1,0	КТ2,0
Относительная погрешность измерений объема и объемного расхода в зависимости от скоростей потока, %:	v≤0,1	(^/	0,2/v)	,3 + 0,2/v)	±(0,3 + 0,2/v)
	0,1 <v≤0,28< td=""><td>,3 + 0,2</td><td>±(0,3 +</td><td>))∓</td><td></td></v≤0,28<>	,3 + 0,2	±(0,3 +))∓	
	0,28 <v≤1,0< td=""><td>0)+</td><td></td><td></td><td>Q</td></v≤1,0<>	0) +			Q
	1,0 <v≤5,0< td=""><td>_</td><td>5,</td><td>±1,0</td><td>±2</td></v≤5,0<>	_	5,	±1,0	± 2
	5,0 <v≤15< td=""><td>±0,3</td><td>0 +1</td><td></td><td></td></v≤15<>	±0,3	0 +1		
Приведенная к диапазону токового выхода погрешность преобразования в сигнал постоянного тока, %			±0	,03	
Коэффициент температурного дрейфа токового выхода, 10-6/К			±	30	
Относительная погрешность преобразования в частотно- импульсный сигнал, %			±0,	,03	

1.2.2 Основные технические характеристики расходомеров

Основные технические характеристики расходомеров приведены в таблице 3.

Таблица 3 – Технические характеристики

Наименование характеристики	Значение
Выходные сигналы: — токовый, мА — частотный, Гц	от 4 до 20 от 0 до 4000
Степень защиты IP	IP66/IP67
Параметры электрического питания: — напряжение переменного тока, В — частота переменного тока, Гц — напряжение постоянного тока, В	100 - 230 B (-15 % / +10 %) 50/60 24 (-80%/ +67%)
Напряжение питания встроенной литиевой батареи, В	3,6
Потребляемая мощность, не более: — переменного тока, ВА — постоянного, Вт	0,2 0,1
Условия эксплуатации: — максимальное давление измеряемой среды, МПа — температура измеряемой среды, °С — температура окружающей среды, °С — атмосферное давление, кПа	43,3 от +1 до +50 (от +1 до +180) ¹⁾ от -30 до +50 от 84 до 106,7
Масса, кг, не более	см. таблицу 10
Средняя наработка на отказ, ч	90000
Средний срок службы, лет	14
	·

1) Значения для исполнения СВ

- Расходомер необходимо защитить от воздействия внешних источников тепла, в том числе от прямых солнечных лучей.
- По устойчивости к воздействию синусоидальной вибрации расходомеры соответствуют группе исполнения №2 по ГОСТ 52931-2008.
- Температура хранения от минус 50 до плюс 70 °С.
- По электромагнитной совместимости расходомеры соответствуют ГОСТ Р МЭК 61326-1, уровень помех – промышленная электромагнитная обстановка.
- Значение усиления ультразвукового сигнала должно быть не более 70 дБ.

1.2.3 Материалы составных частей расходомера

Составные части расходомеров выполнены из материалов, указанных в таблице 4

Таблица 4 – Материалы составных частей расходомера

Составная часть	Материал	
Преобразователь расхода первичный (материал трубы/корпуса и фланцев)	12X18H10T ГОСТ 5632, ASTM 316L (EN 1.4404), Латунь. Другие материалы по запросу.	
Корпус сенсора	12X18H10T FOCT 5632, ASTM 316L (EN 1.4404)	
Корпус преобразователя сигналов	Алюминиевый сплав	
Радиопрозрачное окно	Пластик, стекло	
Межблочный кабель (для раздельного исполнения)	Сборка из нескольких кабелей RG316, объединенных общим экраном, или другим кабелем с параметрами, удовлетворяющими требованиям для данного типа расходомеров	

1.3 Состав расходомера

1.3.1 Исполнение расходомеров

а) По типу преобразователя расхода:

- с цельнометаллическим первичным преобразователем;
- со сварным первичным преобразователем (исполнение CB);

б) По типу монтажа:

- компактное исполнение;
- раздельное исполнение;

в) По назначению:

- стандартное;
- специальное (исполнение Т).

Рисунок 1 – Исполнения расходомера ультразвукового

ПРП и ПС раздельного исполнения соединены межблочным кабелем длиной от 1,5 до 30 м.

10

Описание и работа

1.3.2 Принцип действия

Принцип работы расходомеров основан на измерении разности между временем прохождения ультразвукового импульса в измеряемой среде в направлении, совпадающим с направлением потока, и временем прохождения ультразвукового импульса в противоположном направлении. Разность времени пропорциональна скорости потока измеряемой среды, и, следовательно, объемному расходу. При этом ультразвуковые сенсоры, расположенные по диагонали напротив друг друга, функционируют попеременно как передатчик и приёмник. Таким образом, акустический сигнал, поочередно генерируемый обоими сенсорами, ускоряется, когда направлен по потоку, и замедляется, когда направлен против потока. Разница во времени, возникающая вследствие прохождения сигнала по измерительному каналу в обоих направлениях, пропорциональна средней скорости потока, на основании которой можно затем рассчитать объёмный расход. Использование нескольких акустических каналов позволяет компенсировать искажения профиля потока.

Рисунок 2 — Расположение сенсоров в ПРП

Значение объемного расхода Q рассчитывают по формуле:

$$Q = Gk \times \frac{T_{dn} - T_{up}}{T_{dn} \times T_{up}} \times L_p \times \frac{\pi \times D^2}{4}$$

Где:

Q - объемный расход;

Gk - коэффициент геометрической коррекции;

T_{dn} - время прохождения сигнала между сенсорами по направлению потока;

T_{up} - время прохождения сигнала между сенсорами против направления потока;

L_p - расстояние между сенсорами;

π - число Пи;

D - значение внутреннего диаметра прибора.

Значение коэффициента геометрической коррекции (Gk) — это уникальный коэффициент для каждого расходомера, учитывающий допуски и отклонения при производстве и сборке преобразователя расхода. Значение Gk определяется при проведении калибровки расходомера.

1.3.3 Устройство расходомеров

Расходомер представляет собой единый блок, состоящий из:

- преобразователь расхода (далее ПРП), представляющий собой моноблок с внутренним каналом для прохода измеряемой жидкости;
- преобразователь сигналов (далее ПС), представляющий собой электронный блок, закрепленный на корпусе ПР, либо на кронштейне и соединенный с ПРП коаксиальными кабелями.

Полость ПРП оснащена сенсорами с пьезоэлектрическими преобразователями (далее ПП), преобразующими электрический сигнал в ультразвуковой и обратно. Сенсоры, расположенные друг напротив друга, образуют попарно три акустических канала измерения. Преобразователь сигналов на основе информации, полученной от ПРП, реализует функции расчета скоростей потока, направление потока. Далее определяется объёмный расход и объем.

ПС может быть оснащен различными модулями для реализации передачи измеренных значений посредством протоколов M-Bus, Modbus RTU или LoRaWAN, или через интерфейсы импульсный/частотный выход, токовая петля.

Частотный/импульсный/логический выход (физически это один выход) конфигурируется программным обеспечением (далее ПО) и присутствует во всех модификациях ПС. Работает как самостоятельно, так и с одним из интерфейсов.

Корпус ПРП герметизирован с внутренней стороны, с внешней — имеет металлический защитный кожух. На защитном кожухе с помощью стрелки указано направление потока в расходомере.

ПС, закрепленный на корпусе ПРП (либо на кронштейне), представляет собой электронный блок, встроенный в металлический корпус и имеет две съемные крышки для доступа к внутренним соединителям.

В зависимости от варианта исполнения по источнику питания и типу интерфейса ПС бывает:

- со встроенным источником питания литиевая батарея только в исполнении с интерфейсом LoRaWAN. Запуск прибора в рабочее состояние осуществляется с помощью кнопки, расположенной на плате в батарейном отсеке (подробнее см. п 4.1)
- с внутренним блоком питания с входным напряжением 100-230В переменного тока
- с внутренним блоком питания с входным напряжением 24В постоянного тока

При подключении внешних источников питания прибор автоматически включается.

В случае форс-мажора и отключения внешних источников питания на плате предусмотрен резервный аккумулятор. Ориентировочное время работы расходомера в таком режиме – около недели.

В случае необходимости либо во избежании разряда АКБ/батареи прибор можно отключить с помощью кнопки, расположенной на плате в батарейном отсеке, либо на блоке питания (подробнее см п 4.1)

1.4 Электрические подключения

1.4.1 Электрический монтаж

Электрический монтаж должен проводиться в соответствии с требованиями безопасности по ГОСТ 12.2.007.0-75, «Правила техники безопасности электроустановок потребителей», «Правила техники безопасности при эксплуатации электроустановок потребителем» для электроустановок напряжением до 1000 В.

Таблиц	а 5 – Обц	ая инфо	рмация	я по электі	рическим	подключен	иям
Таолла	u 3 00H	ια/i /iiiiφo	ртацт	ino sherri		подіопо ісп	

	100 - 230 В (-15 % / +10 %) (переменный, 50/60 Гц)
Источник питания	24 В (-80%/ +67%) (постоянный)
	Батарейный блок 3,6 В
	Для переменного тока: < 0,2 BA
потреоляемая мощность	Для постоянного тока: < 0,1 Вт
Межблочный кабель (для раздельного исполнения)	Сборка из нескольких кабелей RG316, объединенных общим экраном, или другим кабелем с параметрами, удовлетворяющими требованиям для данного типа расходомеров
Кабельные вводы (2шт.)	Кабельный ввод M25 x 1,5 F/UTP (согласно ISO/IEC 11801)
Входы и выходы	Все выходные сигналы гальванически изолированы друг от друга и от других электрических цепей.

1.4.2 Комбинации выходных сигналов

Комбинации выходных сигналов ПС указаны в таблице 6.

Версия преобразователя сигналов	Комбинации
Базовая	Имеет импульсный/частотный выход
Модульная	Преобразователь сигналов может быть укомплектован одним из следующих модулей с протоколами: — Пассивная токовая петля — M-Bus — Modbus RTU — LoRaWAN.

Описание и работа

1.4.3 Токовый выход

Выходным параметром токового выхода является значения тока, которое связано линейной функцией с объёмным расходом. Характеристики токового выхода представлены в таблицах 7, 8. Таблица 7 – Характеристики токового выхода

	Значение тока, мА		
Настройка	Интервал настройки значения тока при расходе Q = 0-100%	При наличии ошибки	
Токовая петля	4-20 MA	<3,5 мА или >21 мА	
Температурный коэффициент	Стандартно ± 30х10 ⁻⁶ К ⁻¹		

Таблица 8 – Характеристики токового выхода

Наименование параметра	Значение
Внешнее напряжение, DC, U _{внеш} , В	≤ 32
Максимальная сила тока I _{max} , мА	21,75
Остаточное напряжение постоянного тока, U ₀ , В	≥ 6
Максимальное сопротивление нагрузки R _L , кОм	R _{Lmax} =(U _{внеш} –U ₀)/I _{max}

1.4.4 Импульсный/частотный выход

Выходными параметрами частотного выхода является частота следования импульсов, которая связана линейной функцией с одним из измеряемых параметров объёмного расхода (например: Qmax – 10 м³/ч, частота – 1000 Гц).

Выходными параметрами импульсного выхода являются вес импульса и его длительность.

Длительность импульсов настраивается как автоматическая, симметричная или фиксированная (от 0,1 до 100 мс).

Импульсный выход так же можно настроить в логическом режиме, который позволяет управлять внешней трубопроводной задвижкой/клапаном. В случае превышения верхнего порогового значения расхода жидкости (прорыв на линии) или по необходимости подается логический сигнал на закрытие задвижки/клапана.

Характеристики импульсного выхода представлены в таблице 9.

Таблица 9 – Характеристики импульсного выхода

Наименование параметра	Значение
Внешнее напряжение постоянного тока Ивнеш, В	36
Максимальная сила тока (ключ разомкнут) I, не более, мА	0,001
Максимальная сила тока (ключ замкнут) I, мА	136
Остаточное напряжение (ключ замкнут) U0, В при:	
I = 10 mA	0,4
I = 50 mA	2,0
Сопротивление нагрузки RL, кОм	от 0,25 до 1

1.5 Габаритные размеры

Габаритные размеры расходомеров указаны в таблице 10.

Таблица 10 – Габаритные размеры и масса расходомеров

Составная часть расуоломера	Габаритные размеры, мм, не более			Масса, кг,	
составная часть расходомера	Длина	Ширина	Высота	не более	
Преобразователь расхода DN15	200	150	150	8	
Преобразователь расхода DN20	200	160	160	9	
Преобразователь расхода DN25	235	160	160	12	
Преобразователь расхода DN32	260	160	180	14	
Преобразователь расхода DN40	260	180	200	16	
Преобразователь расхода DN50	280	180	210	18	
Преобразователь расхода DN65	300	190	230	20	
Преобразователь расхода DN80	350	220	250	25	
Преобразователь расхода DN100	380	240	270	30	
Преобразователь расхода DN125	400	245	282	30	
Преобразователь расхода DN150	440	300	325	42	
Преобразователь расхода DN200	470	350	435	80	
Преобразователь расхода DN250	530	450	494	120	
Преобразователь расхода DN300	600	500	552	162	
Преобразователь расхода DN350	630	560	607	215	
Преобразователь расхода DN400	710	640	670	302	
Преобразователь расхода DN450	665	680	740	350	
Преобразователь расхода DN500	780	750	774	400	
Преобразователь расхода DN600	840	890	900	530	
Преобразователь расхода DN700	960	995	1000	610	
Преобразователь расхода DN800	1080	1135	1110	910	
Преобразователь расхода DN900	1200	1135	1220	1100	
Преобразователь расхода DN1000	1300	1360	1350	1600	
Преобразователь сигналов	200	180	120	3	
Длина межблочного кабеля, м	не более 300 м				

Примечания:

1 Значение ширины приведены при условии исполнения фланцев по ГОСТ 33259.

2 Допустимые отклонения габаритных размеров и массы в соответствии с действующей КД.

1.6 Комплектность

Комплектность расходомера указана в таблице 11.

Таблица 11 – Состав комплекта

Наименование	Кол-во, шт.
1. Расходомер (ПРП и ПС)	1
2. Межблочный кабель	1*
3. Литиевые батареи (2 шт.), с соединительным разъемом	1**
4. Руководство по эксплуатации	1
5. Паспорт	1
6. Упаковка	1
* для раздельного исполнения	
** в зависимости от интерфейса	

Допускается прикладывать к поставке иную документацию, в соответствии с условиями договора или по согласованию с заказчиком.

1.7 Маркировка

Маркировка расходомеров наносится на специальные таблички, которые закрепляются на корпусах ПРП, ПС. Маркировочные обозначения также наносятся на титульные листы эксплуатационной документации.

Пример оформления таблички приведен на рисунке 3.

робочитик ультразвуковой	Температура окружающия стали от минус 30 до плос 50 гс
ли изо инб миб окс м. 092023 ига из од 2023 ига изо ирбание и и и и и и и и и и и и и и и и и и	(Информацию по входам и выходам ок. на уривна (с)
Tochemian packogomepa GK: 2,1564	
лизние 15 36 8 пост ток от батареи 15 36 8 пост ток от батареи Сатано в России	

Рисунок 3 – Табличка на ПС

Таблица 12 – Маркировка расходомеров

Маркировочное	Место нанесения			
обозначение	ПРП	ПС	ЭД	
Наименование предприятия-изготовителя	x	х	х	
Страна, город	x	x	х	
Товарный знак предприятия-изготовителя	x	х	х	
Полное условное обозначение расходомера	x	x	х	
Знак утверждения типа средств измерений	x	x	х	
Знак Евразийское соответствие ЕАС	x	x	х	
Заводской номер	x	x		
Дата выпуска изделия	x			
Номинальный диаметр ПР (DN, мм)	x	х		
Рабочее давление (PN, МПа)	x	х		
Вид питания, номинальное значение напряжения питания (В)		х		
Тип тока (постоянный/переменный)		x		
Частота тока, Гц		х		
Номинальная потребляемая мощность (Вт)		x		
Степень защиты оболочки, IP	x	х		
Информацией о входах и выходах				
Постоянная расходомера Gk		х		
Рабочий диапазон расхода, м³/ч;		х		
Относительная погрешность измерения расхода, %		х		
Температура окружающей среды х х				
Материал корпуса и фланцев	x			
Длина межблочного кабеля ¹⁾		x		
1) В зависимости от исполнения				

Описание и работа

На транспортной таре наносятся основные, дополнительные и информационные надписи, а также манипуляционные знаки, имеющие значение: «Хрупкое-осторожно», «Верх», «Беречь от влаги», «Штабелировать запрещается» или "Ограничения по количеству ярусов штабелей" по ГОСТ 14192-96. Кроме предупредительных знаков на транспортную тару должны быть нанесены основные, дополнительные и информационные надписи.

Основные надписи:

- полное или условное зарегистрированное в установленном порядке наименование грузополучателя и его адрес;
- наименование пункта назначения.

Дополнительные надписи:

 полное или условное зарегистрированное в установленном порядке наименование отправителя и его адрес.

Информационные надписи:

- масса брутто и нетто грузового места в килограммах;
- габаритные размеры грузового места в сантиметрах (длина, ширина, высота).

1.8 Пломбирование

Расходомер-счетчик ультразвуковой УРМ имеет заводское пломбирование для предохранения от несанкционированного доступа к ПРП и ПС.

1.9 Упаковка

Способ упаковки, транспортная тара, материалы, применяемые при упаковке, и порядок размещения соответствуют технической документации предприятия-изготовителя.

Эксплуатационная документация помещается в защитную полиэтиленовую пленку, а затем в картонный конверт. Также в ящик помещается упаковочный лист.

2 Использование по назначению

2.1 Эксплуатационные ограничения

2.1.1 Требования к установке и эксплуатации

Должны выполняться следующие требования при установке и эксплуатации расходомеров:

- в зоне установки сигнализаторов уровня не должно находиться оборудование, способное создать помехи при работе расходомеров;
- расходомеры должны быть надежно заземлены в соответствии с принятыми нормами.

Изготовитель не несет ответственности за повреждения любого типа, возникшие в результате использования данного изделия.

На каждый приобретенный расходомер действует гарантия согласно документации на изделие и условиям изготовителя по реализации и поставке.

Ответственность за соответствие данных расходомеров определенной цели по их применению, лежит на пользователе. Изготовитель не несет ответственности за последствия использования прибора пользователем не по назначению. Неправильная установка и управление измерительными приборами (системами) ведет к потере гарантии.

2.1.2 Квалификация персонала

К эксплуатации расходомеров допускаются лица, изучившие настоящее руководство, имеющие группу допуска по эксплуатации электроустановок не ниже II, прошедшие инструктаж и сдавшие экзамен по технике безопасности по работе с электрооборудованием

2.1.3 Требования к монтажным участкам

2.1.3.1 Общие требования

Внутренняя сторона трубопровода на измерительных позициях не должна иметь острых кромок и элементов, создающих возмущения потока. Расстояние от торца уплотнительной поверхности ответного фланца выходного участка расходомера до других внешних датчиков должно составлять ≥ (5 Ду). Используйте датчики, как можно менее перекрывающие диаметральное сечение трубопровода, чтобы избежать возмущений профиля потока.

При опасности возникновения кавитации необходимо принять соответствующие меры для ее предотвращения.

2.1.3.2 Вибрация

При возникновении колебаний трубопроводов необходимо принимать меры для уменьшения вибрации расходомера.

Рисунок 4 – Вибрация

Рисунок 5 – Рекомендуемые длины прямых участков на входе и выходе расходомера

2.1.3.4 Отводы типа 2D или 3D

Рисунок 6 – Отводы типа 2D или 3D

2.1.3.5 Т-образное соединение

Рисунок 7 – Т-образное соединение

2.1.3.6 Положение расходомера в изогнутых трубопроводах

Рисунок 8 – Положение расходомера в изогнутых трубопроводах

2.1.3.7 Свободная подача или слив продукта

Рисунок 9 – Свободный слив

2.1.3.8 Расположение регулирующего клапана

Рисунок 10 – Расположение регулирующего клапана

2.1.3.9 Расположение насоса

Рисунок 11 – Расположение насоса

2.1.3.10 Нисходящий участок трубопровода длиной более 5 м

Рисунок 12 – Нисходящий участок трубопровода длиной более 5 м

Для предотвращения образования разряжения установите воздуховыпускной клапан после расходомера.

2.1.3.11 Положение фланцев

Рисунок 13 – Положение фланцев

3 Подготовка расходомера к использованию

3.1 Меры безопасности при подготовке расходомера

Источниками опасности при монтаже и эксплуатации расходомеров являются электрический ток и измеряемая среда, находящаяся под давлением до 43,3 МПа при температуре до 180 °C.

При подготовке расходомеров необходимо соблюдать общие требования безопасности по ГОСТ 12.2.007.0, «Правила безопасности электроустановок потребителей» (ПЭЭП), «Правила техники безопасности при эксплуатации электроустановок потребителем» для электроустановок напряжением до 1000 В.

Расходомеры должны обслуживаться персоналом, имеющим квалификационную группу по технике безопасности не ниже II в соответствии с «Правилами техники безопасности при эксплуатации электроустановок потребителями».

Все работы по подготовке расходомеров к работе, монтажу и эксплуатации необходимо проводить после тщательного ознакомления со схемой, руководством по эксплуатации.

Подсоединение и отсоединение расходомера на трубопроводе должно производиться при полном отсутствии жидкости в трубопроводе.

Подключение блока питания должно проводиться только при выключенном питании.

Расходомер не содержит вредных веществ и компонентов, представляющих опасность для здоровья людей и окружающей среды при эксплуатации, а также в процессе ремонта, окончания срока службы и при утилизации.

3.2 Объем и последовательность внешнего осмотра расходомера

- Тщательно проверьте упаковку на наличие повреждений или признаков, указывающих на ненадлежащее обращение. О выявленных недостатках сообщите транспортной компании или местному представителю изготовителя.
- Проверьте упаковочный лист, чтобы установить наличие полной комплектации.
- По типовым табличкам проверьте соответствие поставленного расходомера.
- Проверьте, правильное ли напряжение питания указано на типовой табличке.
- Удалите с расходомера все транспортировочные предохранительные устройства и защитные покрытия.
- Обратите внимание на то, чтобы уплотнительные прокладки были того же диаметра, что и трубопроводы.
- Обратите внимание на правильное направление потока в расходомере. Оно указывается с помощью стрелки на корпусе преобразователя расхода.

3.3 Монтаж расходомеров

Монтажное положение расходомера представлено на рисунке 14.

Рисунок 14 — Монтажное положение блока электроники расходомера горизонтальное (правильно) и вертикальное (неправильно)

3.3.1 Крепление корпуса преобразователя сигналов раздельного исполнения на монтажную стойку

3.3.2 Крепление корпуса преобразователя сигналов раздельного исполнения на плоскую поверхность

1 Прижмите кронштейн с преобразователем сигналов к плоской поверхности 2 Установите и затяните крепежные элементы (в комплект поставки не входят)

Рисунок 16 – Крепление на плоской поверхности

3.4 Электрический монтаж

3.4.1 Общая информация

- ВНИМАНИЕ! Напряжение источника питания должно соответствовать маркировке расходомера. Перед началом электрических подключений следует снять напряжение питания.
- ВНИМАНИЕ! При питании расходомера от электрической сети вблизи устройства необходимо установить внешний выключатель или автоматический рубильник для возможности отключения питания (например, в целях проведения сервисного обслуживания). Он должен быть легко доступен для оператора и обозначен в качестве устройства отключения для данного оборудования.

Выключатель или автоматический рубильник и проводка должны соответствовать требованиям конкретного применения, а также локальным требованиям (в части обеспечения безопасности), предъявляемым к установке оборудования.

Для подключения цепей напряжения питания или сигнальных цепей может быть использован 3-х жильный экранированный кабель. Наружный диаметр кабеля должен быть в пределах 6 - 12 мм.

Площадь поперечного сечения проводников должна быть в пределах 0,13 - 2,5 мм² (AWG14-26). Изоляция кабеля должна соответствовать требованиям стандарта IEC 60245/60227.

3.4.2 Подсоединение проводов

ВНИМАНИЕ! Перед открытием корпуса расходомера необходимо убедиться, что напряжение питания отключено как в цепи питания, так и в сигнальной цепи! Перед подключением проводов в цепях питания и в сигнальных цепях убедитесь, что напряжение питания отключено!

Подключение цепей питания и сигнальных цепей следует выполнять в следующей последовательности:

- следует открыть заднюю крышку алюминиевого корпуса прибора
- пропустить кабель питания и сигнальный кабель через соответствующий кабельный ввод и закрепить кабели в кабельных вводах
- подключить проводник заземления
- подключить провода цепи питания и провода сигнальной цепи к соответствующим клеммам блока электроники
- закрыть заднюю крышку алюминиевого корпуса прибора

Клеммы и их обозначение для подключения питания 100-230В (-15%/+30%, переменный ток AC) к ПС представлены на рисунке 17.

Рисунок 17— Клеммы для подключения питания 100-230В (-15%/+30%, переменный ток) к ПС

27

Клеммы и их обозначение для подключения питания 24В (-80%/ +67%, постоянный ток DC) к ПС представлены на рисунке 18.

Рисунок 18— Клеммы для подключения питания 24В (-80 %/+67%, постоянный ток) к ПС

ВНИМАНИЕ! Информация о версиях и конфигурации выходных сигналов в Вашем расходомере указана на наклейке, которая расположена сверху на крышке БП.

Клеммы и их обозначение для подключения сигнальных проводов представлены на рисунке 19

а) Токовая петля

- 1 Клемма импульсного/частотного/логического выхода «1»;
- 2 Клемма импульсного/частотного/логического выхода «2»;
- А+ Клемма выхода интерфейса токовой петли «А+» ;
- А Клемма выхода интерфейса токовой петли «А».

б) M-Bus

- 1 Клемма импульсного/частотного/логического выхода «1»;
- 2 Клемма импульсного/частотного/логического выхода «2»;
- М1– Клемма выхода интерфейса M-Bus «М1»;
- M2– Клемма выхода интерфейса M-Bus «M2».

в) Modbus

- 1 Клемма импульсного/частотного/логического выхода «1»;
- 2 Клемма импульсного/частотного/логического выхода «2»;
- А Клемма выхода интерфейса Modbus «А»;
- В Клемма выхода интерфейса Modbus «В».

Рисунок 19 – Клеммы для подключения интерфейсов

3.4.3 Заземление корпуса преобразователя расхода посредством отдельного заземляющего проводника М.

Отдельный заземляющий проводник М выполняет функцию защитного (PE) заземления. Смотрите соответствующие предписания, касающиеся требований, предъявляемых к этому особому виду установок (например, использование автоматических предохранительных выключателей, действующих при появлении тока утечки).

Рисунок 20— Организация заземления при помощи отдельного заземляющего проводника М

При подключении к цепям заземления руководствоваться требованиями нормативных документов ГОСТ Р 50571.5.54-2013 (VDE 0100/VDE 0106 и/или IEC 364/IEC 536).

3.4.4 Проверка качества электромонтажа

- необходимо соблюдать требования безопасности при подключении цепей переменного тока.
- следует убедиться, что подключаемое напряжение соответствует напряжению питания расходомера.
- следует убедиться, что проводники цепи питания и сигнальной цепи подключены корректно.
- следует убедиться, что кабельные вводы плотно затянуты.
- следует убедиться, что крышка корпуса расходомера плотно закрыта и затянута.

3.4.5 Схемы подключения выходных сигналов

3.4.5.1 Общие сведения

ВНИМАНИЕ! Все группы электрически изолированы друг от друга и от других цепей входных и выходных сигналов.

Импульсный/частотный и токовый выходы работают исключительно в пассивно режиме, при котором необходим внешний источник питания (Ивнеш.).

Неиспользуемые токопроводящие клеммы не должны соприкасаться с другими токопроводящими частями.

Таблица 13 – Условные обозначения на электрических схемах

	мА - миллиампер от 4 до 20 мА. RL обозначает внутреннее сопротивление в контрольных точках вместе с сопротивлением кабеля
— (=) —	Источник напряжения постоянного тока Uext (Ивнеш), внешний источник питания, независимость от полярности подключения
^U ext +	Источник напряжения постоянного тока Uext (Uвнеш), соблюдайте полярность подключений в соответствии со схемами
Ø	Встроенный в устройство управляемый источник тока
000	Электронный или электромагнитный счетчик При частоте сигнала более 100 Гц для подключения счетчиков должен быть использован экранированный кабель. Ri - внутреннее сопротивление счетчика
KM M-Bus	Конвертер мастер M-Bus

3.4.5.2 Базовая версия выходных сигналов

Пассивный импульсный/частотный выход, базовая версия:

- любая полярность подключения;
- Ивнеш. ≤ 40В постоянного тока;
- fmax настроена по умолчанию на fmax = 1 кГц; I ≤ 36 мА. Возможный диапазон в пределах 100 Гц < fmax ≤ 4 кГц;
- при разомкнутом I ≤ 0,001 мА при Uвнеш. = 40 В постоянного тока;
- при замкнутом U0,max = 0,4 В при I ≤ 10 мА, U0,max =2 В при I ≤ 50 мА.
- при частотах более 100 Гц необходимо использовать экранированные кабели для снижения влияния электрических помех (ЭМС);

В случае превышения следующего максимального полного сопротивления нагрузки RL, max необходимо соответствующим образом понизить полное сопротивление нагрузки RL при помощи параллельного подключения резистора R:

- f ≤ 100 Гц: RL,max = 47 кОм;
- f ≤ 4 кГц: RL,max = 1 кОм.

Минимальное сопротивление нагрузки RL, min рассчитывается следующим образом:

RL,min = (Uвнеш. - U0)/Imax

Рисунок 21 – Пассивный импульсный/частотный выход

3.4.5.3 Модульные версии выходных сигналов

Пассивный токовый выход, модуль «Токовая петля»:

- Ивнеш. ≤ 32 В постоянного тока;
- Пороги ошибки: нижний 3,375 мА, верхний 21,75 мА;
- U0 \ge 6 B;
- RL ≤ (Uвнеш. U0)/ Imax

Рисунок 22 – Пассивный токовый выход

ВНИМАНИЕ! Соблюдайте полярность подключений.

Модуль «M-Bus»:

- любая полярность подключения;
- одно ведомое устройство занимает 2 единичные нагрузки до 3мА;

Рисунок 23 – Модуль «M-Bus»

4 Использование расходомера

4.1 Запуск расходомера

Расходомер поставляется комплектно, готовым к эксплуатации. Настройка рабочих параметров производится на заводе-изготовителе в соответствии с техническими требованиями.

Перед подключением к источнику питания убедитесь в правильности электрического монтажа. Проверьте следующее:

- расходомер не должен иметь механических повреждений и его монтаж должен быть выполнен в соответствии с инструкцией по монтажу и эксплуатации;
- соединение с источником питания должно быть выполнено в соответствии с руководством по эксплуатации;

ВНИМАНИЕ! Убедитесь в том, что технические характеристики источника питания соответствуют требованиям паспортных данных расходомера.

После включения питания расходомером проводится самодиагностика. После этого прибор сразу начинает выполнять измерения и отображать текущие значения.

ВНИМАНИЕ! Приборы с батарейным блоком питания поставляются выключенными для исключения разряда батареи при длительном хранении. Для включения прибора необходимо нажать кнопку включения питания, расположенную на плате в батарейном отсеке и удерживать в течении 1 секунды.

ВНИМАНИЕ! Для выключения прибора с любым источником питания необходимо нажать и удерживать в течении 20 секунд кнопку расположенную на плате в батарейном отсеке либо на блоке питания.

Рисунок 24 – Кнопка включения/выключения питания

4.2 Эксплуатация расходомера через мобильное приложение «УРМ»

4.2.1 Общие данные

- Работа расходомера осуществляется посредством мобильного приложения «УРМ», работающего на устройствах с операционной системой Android.
- Требования к операционной системе Android версия 7 и выше.
- Мобильное устройство должно поддерживать протокол Bluetooth 4.1 и выше.
- Скачать приложение возможно бесплатно на официальном сайте, по ссылке (QR коду), указанной на маркировочной табличке расходомера.

4.2.2 Установка приложения «УРМ»

Найдите приложение «УРМ» на официальном сайте. Для загрузки выберите пункт «Установить».

Для корректной работы приложения «УРМ» необходимо разрешить ему определение местоположения в настройках прав приложений Android. Если при отображении интерфейса часть объектов не помещается на экране или текст обрезан по высоте, то установите в настройках экрана смартфона «мелкий» масштаб изображения на экране.

4.2.3 Запуск приложения «УРМ»

Чтобы запустить приложение «УРМ», коснитесь его значка на экране приложений вашего устройства.

После входа в приложение «УРМ» автоматически начнется поиск устройств доступных для подключения. Если расходомер находится в диапазоне видимости устройства, то через некоторое время он появится в списке (рисунок 25). Если расходомер не появился в списке, необходимо подойти к нему ближе и проверить наличие у него питания.

УРМ 2.0		СКАН	
	YPM_0x64AC MAC: 74:D2:85:1D:64:AC RSSI: -90		
			0
			\triangleleft

Рисунок 25 – Стартовый экран

Для выбора устройства необходимо нажать на его изображение «УРМ», после чего появится окно для ввода пароля (рисунок 26).

Введите пароль		
Внимание! Все изменения фиксируются в журнал!	0	
	0	
ОТМЕНА ПОДТВЕРДИТЬ	\bigtriangledown	

Рисунок 26 – Экран ввода пароля

При вводе неверного пароля данное окно закроется и появится сообщение о том, что пароль неверный.

В случае ввода верного пароля произойдет подключение к прибору.

В приложении «УРМ» предусмотрено три уровня доступа к управлению – «Пользовательский», «Калибровочный» и «Сервисный». Каждому уровню присвоен свой пароль.

Пользовательский пароль по умолчанию - 900001

4.2.4 Основное меню приложения «УРМ»

Основное меню приложения «УРМ» состоит из нескольких окон:

- «Инфо»;
- «График»;
- «Ошибки»;
- «Настройки».

Уровни доступа имеют различия в окне «Настройки».
4.2.5. Описание окна «Инфо»

После того как устройство подключено, на экране появится главное окно (рисунок 27), в котором представлены значения текущего расхода в метрах кубических в час, общий накопленный расход в литрах и амплитуда сигнала на первом канале в децибелах.

Существует возможность изменения размерности измеряемых величин путем нажатия на выпадающий список:

- для текущего расхода это метры кубические и литры в час (выноска 1),
- для накопленного расхода это литры и метры кубические (выноска 2).

В выпадающем списке 1 возможен выбор величины метры в секунду, в результате которого в поле значения «Расход» будет выводиться текущая скорость потока.

В данном окне предусмотрено поле ошибок (выноска 3), которые могут возникать при работе расходомера. Информация о возникших ошибках представлена на экране «Ошибки».

Поле текущего состояния взаимодействия приложения «УРМ» с расходомером (выноска 4), показывает, подключено или отключено устройство в данный момент.

Также на экране данного окна отображена информация о подключенных интерфейсах (выноска 5), текущих приборных дате и времени (выноска 7) и температуре измеряемой среды или блока электроники (выноска 8).

Для управления подключением нужно перейти в настройки интерфейсов.

Если прибор оборудован батарейным питанием, то в случае низкого заряда батареи будет отображено это предупреждение (выноска 6).

Рисунок 27 – окно «Инфо»

В каждом окне предусмотрены кнопки навигации по приложению: «Инфо», «График», «Ошибки» и «Настройки»

4.2.6 Описание окна «График»

При нажатии на кнопку «График», откроется новое окно (рисунок 28).

Рисунок 28 – окно «График»

В данном окне отображается текущий расход в графическом представлении в режиме реального времени, а также численные значения текущего расхода в литрах в час.

Продублированы поля из окна «Инфо», которые информируют об ошибках (выноска 1), состоянии подключения (выноска 2), текущем времени (выноска 3) и низком заряде батарейного блока питания (выноска 4).

4.2.7 Описание окна «Ошибки»

Узнать о возникших ошибках можно, нажав кнопку «Ошибки». Откроется окно с текущим состоянием возможных неполадок (рисунок 29). Если наименование ошибки (выноски 8-18) выделяется красным цветом - данный параметр содержит ошибку и требуется её устранение. Если прибор работает в штатном режиме наименования ошибок белого цвета.

В таблице 14 приведены разъяснения наименований сигналов ошибок.

Также в окне продублированы поля из окна «Инфо», которые информируют о наличии ошибок (выноска 1), состоянии подключения (выноска 2), текущем времени (выноска 3) и низком заряде батарейного блока питания (выноска 4).

В окне отображаются амплитуды измеряемых в соответствующих каналах сигналов (выноска 5) и скоростей потока (выноска 7).

Единицы измерения амплитуды сигналов (дБ или мВ) можно выбрать в выпадающем меню (выноска 6).

Рисунок 29 - окно «Ошибки»

Таблица 14 - Типы ошибок

Наименование ошибки	Описание	Выноска
Шум1	Шум по 1 каналу. Означает, что сигнал на 1 сенсоре сильно зашумлен. Свидетельствует о наличии электрических помех, неоднородности среды или пустой трубе	8
Возд.1	Пузырьки в 1-ом канале. Свидетельствует о наличии неоднородностей, в частности пузырьков воздуха в районе 1-го канала	9
Сенс.1	Сенсор 1 не работает. Свидетельствует о неисправности сенсоров 1-го канала	10
Шум2	Шум по 2-му каналу. Сигнал на 2-ом сенсоре сильно зашумлен. Свидетельствует о наличии электрических помех, неоднородности среды или пустой трубе	8
Возд.2	Пузырьки в 2-ом канале. Свидетельствует о наличии неоднородностей, в частности пузырьков воздуха в районе 2-го канала	9
Сенс.2	Сенсор 2 не работает. Свидетельствует о неисправности сенсоров 2-го канала	10

Таблица 14 (продолжение)

Наименование ошибки	Описание	Сноска
Шум3	Шум по 3-му каналу. Сигнал на 3-м сенсоре сильно зашумлен. Свидетельствует о наличии электрических помех, неоднородности среды или пустой трубе	8
Возд.З	Пузырьки в 3-ом канале. Свидетельствует о наличии неоднородностей, в частности пузырьков воздуха в районе 3-го канала	9
Сенс.3	Сенсор 3 не работает. Свидетельствует о неисправности сенсоров 3-го канала	10
Диап.	Ошибка измерений. Показания передаваемые в данный момент прибором не корректные и не могут учитываться. Свидетельствует о серьёзных сбоях в работе расходомера, выполнении процессов, при которых измерения не возможны, выходе показаний за пределы измерений.	15
Память	Ошибка памяти. Свидетельствует о внутренних неисправностях расходомера. В данном случае запись показаний в память становится не возможной.	16
Настр.	Ошибка настроек. Применяемые настройки некорректны. Контрольная сумма настроек не совпадает с оригинальной	12
Интер.	Ошибка интерфейса связи M-Bus или Lora. Свидетельствует о неисправности модуля	13
Измер.	Ошибка устройства первичного преобразования	14
CRC	Ошибка контрольной суммы. Свидетельствует о неисправности ПО устройства	17
Ноль	Запущен процесс калибровки ноля	11

Для устранения ошибок следует обратиться в сервисный центр.

4.2.8 Описание окна «Настройки»

При нажатии на кнопку 🚞, откроется окно настроек (рисунок 30).

	🏟 Настройки		
Ar	Тестирование		
Ш	Время		0
Bo Ce	Информация		
A	Имитационная поверка		\triangleleft
	Журнал	2	
2	📩 Настройки		
			-
Ar V	Интерфейсы		
	Интерфейсы Каналы		
Ar V UL Bo Ce	Интерфейсы Каналы Сервис		0
Ar V U Bo Ce A	Интерфейсы Каналы Сервис Тестирование		

Рисунок 30 – Окно «Настройки»

Окно «Настройки» доступно в трех вариантах, в зависимости от уровня предоставленного доступа управлением расходомера – «Пользовательский», «Калибровочный» и «Сервисный».

Для уровня доступа пользователя будут доступны пункты: "Информация", "Интерфейсы", "Время", "Журнал", "Имитационная поверка".

Для уровня доступа калибровщик будут доступны пункты: "Интерфейсы", "Калибровка", "Информация", "Каналы", "Тестирование".

Для сервисного уровня доступа будут доступны все пункты меню, изображенные на рисунке 30.

4.2.9 Описание пунктов меню «Настройки»

4.2.9.1 Окно «Интерфейсы»

При нажатии на строку «Интерфейсы» в меню настроек появится окно выбора интерфейса и протокола обмена данными.

Рисунок 31 – Окно «Интерфейсы»

Чтобы интерфейс работал необходимо его включить, для этого нужно поставить галочку напротив нужного интерфейса (выноска 1) и протокола (выноска 2) и нажать на кнопку «Сохранить». Потребуется перезагрузка прибора. При нажатии на кнопку «Отмена» галочки напротив интерфейсов вернутся в исходное положение.

Одновременно можно выбрать один выходов: частотный, импульсный, логический; и один из протоколов: токовая петля, LoRaWAN, M-Bus, Modbus, Служебный интерфейс.

Служебный интерфейс необходим только для заводской настройки и сервисных служб. Он не предоставляет дополнительных возможностей по настройке прибора, а лишь дублирует Bluetooth канал.

Кнопка "Дисплей" нужна для активации модуля дисплея. При отсутствующем модуле дисплея, ни на что не влияет.

Для работы протоколов должен быть подключен соответствующий физический модуль-схема.

Если интерфейс включен, то можно выполнить его настройку, для этого необходимо нажать на значок шестерёнки рядом с ним (выноска 3).

При выполнении этого действия появится окно параметров выбранного интерфейса или протокола.

4.2.9.2 Окно «Частотный выход»

В данном окне осуществляется настройка параметров частотного выхода.

1, - Частотный выход		
	1000	
Максимальное значение (л)	35.0	
(3) Измеряемая величина	л/ч 👻	
Ŭ		0
		\triangleleft
	Сохранить	

Рисунок 32 – Окно «Частотный выход»

Настройки частотного выхода, где:

- Fmax = от 100 до 4000 Гц (выноска 1),
- Максимальное значение = нет ограничений (выноска 2).
- Существует возможность изменения размерности измеряемой величины, путем нажатия на выпадающий список (выноска 3).

4.2.9.3 Окно «Импульсный выход»

В данном окне осуществляется настройка параметров импульсного выхода.

Рисунок 33 – Окно «Импульсный выход»

В настройках импульсного выхода можно задать значение веса импульса = от 0,001 до 1000 и размерности измеряемой величины (выноска 1), частоту обновления (выноска 2), время импульса (выноска 3), длительность паузы (выноска 4).

4.2.9.4 Окно «Логический выход»

В данном окне осуществляется настройка параметров логического выхода.

÷	Логический выход	
~	Логический 0	
	Логическая 1	
		0
		\bigtriangledown
	Сохранить	

Рисунок 34 – Окно «Логический выход»

Подключение и отключение логического выхода осуществляется путем выбора с помощью галочки, где:

- Логический 0 интерфейс отключен;
- Логическая 1 интерфейс подключен.

4.2.9.5 Окно «Токовая петля»

В данном окне осуществляется настройка параметров токовой петли.

	🗲 Токовая петля	
1-	Измеряемая величина м ³ /ч -	
2-	Максимальное значение (м³)89.60	
	Сохранить	

Рисунок 35 – Окно «Токовая петля»

Настройки интерфейса «Токовая петля», где:

- Максимальное значение = нет ограничений (выноска 2).
- Изменения размерности измеряемой величины путем нажатия на выпадающий список (выноска 2).

4.2.9.6 Окно «LoRaWAN»

Данное окно состоит из четырех вкладок «Настройки», «Данные ABP», «Данные OTAA» и «Каналы». Английские наименования настроек в меню для LoRaWAN взяты из спецификации LoRaWAN™ v1.0.3 Specification и ПНСТ «Протокол обмена для высокоемких сетей с большим радиусом действия и низким энергопотреблением».

Рисунок 36 – Окно «LoRaWAN «Настройки»

Во вкладке «Настройки» (рисунок 42) возможен выбор из выпадающего списка параметра Join mode (выноска 1). Необходимо выставить галочки в тех окошках (выноска 2), которые необходимы.

Также из выпадающего списка возможен выбор периода связи (выноска 3)и задержки (выноска 4). Здесь же предусмотрены кнопки «Активация» - для активации прибора в сети LoRaWAN (выноска 5), «Отправка» — для отправки сообщения вне установленного времени (выноска 6) и «Установка времени» — для установки времени на приборе по сети LoRaWAN (выноска 7).

Кнопка «Стандартные» (выноска 9) предназначена для заполнения всех параметров настроек «LoRaWAN» значениями по умолчанию для большинства сетей.

После изменения всех настроек или заполнения стандартными значениями необходимо нажать кнопку «Сохранить» (выноска 8).

Вкладка «Данные ABP» (рисунок 37) предусматривает возможность вручную вводить адрес устройства (выноска 1) и ключи подключения (выноска 2).

Также присутствуют кнопки «Стандартные» (выноска 4) для возврата к настройкам по умолчанию и «Сохранить» (выноска 3) для сохранения изменений.

÷	LoRaWAN	
9	Настройки Данные АВР Данные ОТАА Каналы	
Device a	ddress	
2 NwKs Ke	eyFFEEDDCCBBAA99887766554433221100	
Apps Key	y112233445566778899AABBCCDDEEFF00	0
		\triangleleft
	Сохранить Стандартные	
	$\overline{34}$	

Рисунок 37 – Окно «LoRaWAN «Данные ABP»

Вкладка «Данные ОТАА» (рисунок 38) имеет аналогичный с вкладкой «Данные ABP» функционал: адрес устройства (выноска 1), ключи подключения (выноска 2), кнопки «Стандартные» (выноска 4) для возврата к настройкам по умолчанию и «Сохранить» (выноска 3) для сохранения изменений.

← LoRaV	VAN	
Had	стройки Данные АВР <u>Данные ОТАА</u> Каналы	
Device EUI	7722334455667788	
2 App EUI	7722334455667788	
Арр Кеу	99887766554433222233445566778899	0
		\triangleleft
	Сохранить Стандартные	
	(3)(4)	

Рисунок 38 – Окно «LoRaWAN «Данные ОТАА»

Вкладка настроек LoRaWAN «Каналы» (рисунок 39) позволяет настраивать параметры каналов передачи данных — задавать их рабочую частоту и подключать их по мере необходимости (выноска 1).

Рисунок 39 – Окно «LoRaWAN «Каналы»

Также присутствуют кнопки «Стандартные» (выноска 3) для возврата к настройкам по умолчанию и «Сохранить» (выноска 2) для сохранения изменений.

4.2.9.7 Окно «M-Bus»

Данное окно предназначено для установки адресов по протоколу M-Bus. На экране будут отображены текущие адреса – первичный (выноска 1) и вторичный (выноска 2).

Рисунок 40 – Окно «M-Bus»

47

Для установки новых адресов необходимо ввести их значения в соответствующих полях.

Установка скорости обмена данными устанавливается в выпадающем меню (выноска 3).

Кнопка «Стандартные» (выноска 5) предназначена для заполнения всех параметров настроек «M-Bus» значениями по умолчанию:

- первичный адрес 0,
- вторичный адрес заводской номер прибора.

После изменения всех настроек или заполнения стандартными значениями необходимо нажать кнопку «Сохранить» (выноска 4).

4.2.9.8 Окно «Modbus»

Данное окно предназначено для установки адресов по протоколу Moddus. На экране будут отображены текущий адрес, скорость передачи данных (выноска 2) и четность (выноска 3).

Рисунок 41 – Окно «Modbus»

Кнопка «Стандартные» (выноска 5) предназначена для заполнения всех параметров настроек «Modbus» стандартными значениями.

После изменения всех настроек или заполнения стандартными значениями необходимо нажать кнопку «Сохранить» (выноска 4).

4.2.9.9 Окно «Каналы»

При нажатии на строку «Каналы» в меню настроек появится окно, представленное на рисунке 42.

Рисунок 42 – Окно «Каналы»

Чтобы посмотреть осциллограммы сигналов по трем каналам необходимо нажать на цифру 3 в квадратной рамке (выноска 4), после этого в окне появится осциллограмма, показанная на рисунке 43.

Также для просмотра доступны осциллограммы по каждому из каналу. В этом случае выгружается по три кадра на каждый из каналов. Например, для того чтобы выгрузить осциллограммы для 1 канала нужно нажать на цифру 1 в кружке (выноска 1). Соответственно для каналов 2 и 3 – цифры 2 в кружке (выноска 2) и 3 в кружке (выноска 3). После нажатия окне появится осциллограмма, показанная на рисунке 44.

Кнопки Канал 1 (выноска 1), Канал 2 (выноска 2), Канал 3 (выноска 3) на рисунке 43 — кнопки для переключения между графиками сигнала соответствующего канала.

Стрелка вверх, стрелка вниз (выноска 4) – кнопки для включения отображения графиков сигналов вверх и вниз по каналу соответственно.

Рисунок 44 – Окно «Каналы «1й канал»

Кнопки Кадр 1 (выноска 1), Кадр 2 (выноска 2), Кадр 3 (выноска 3) на рисунке 44 — кнопки для переключения между кадрами графика сигнала для канала. Номер исследуемого канала указан слева от кнопок.

Стрелка вверх, стрелка вниз (выноска 4) — кнопки для включения отображения графиков сигналов вверх и вниз по каналу соответственно.

Триг. (%) – уровень триггера (выноска 5).

Усил. (дБ) – усиление сигнала (выноска 6).

С/Ш (дБ) – отношение сигнала к шуму сигнала соответственно вверх и вниз по каналу (выноска 9).

t (мкс) – время пролёта сигнала соответственно вверх и вниз по каналу (выноска 10).

Δt (мкс) – разница во времени пролёта сигнала вверх и вниз по каналу (выноска 7).

Дост. – достоверность (выноска 8).

4.2.9.10 Окно «Сервис»

При нажатии на строку «Сервис» в меню настроек появляется дополнительное окно для настройки параметров самого расходомера (рисунок 45). Здесь доступны две вкладки: «Каналы» и «Система».

Рисунок 45 - Окно «Сервис «Каналы»

Во вкладке «Каналы» можно задавать весовые коэффициенты (выноска 1), пути (выноска 2), ноли (выноска 3) для каждого из каналов, а также условный диаметр расходомера (выноска 4) и Gk (выноска 5).

Gk – постоянная расходомера. Значение постоянной расходомера (Gk) – это уникальный коэффициент для каждого расходомера, учитывающий допуски и отклонения при производстве и сборке ПР. Значение Gk определяется при проведении калибровки расходомера.

Здесь же находятся кнопки «Калибровка» (выноска 6) и «Направление потока» (выноска 7).

Нажатие на кнопку «Калибровка» обеспечивает запуск калибрования нуля расходомера.

ВНИМАНИЕ! Калибровку нуля необходимо проводить в неподвижной воде.

Калибровка нуля занимает некоторое время (около двух минут). В процессе калибровки нуля в окне «Ошибки» (см. п.4.2.7) будет гореть красным цветом индикатор «Ноль».

В случае неправильной установки прибора (не по стрелке направления потока), возможно, не разбирая трубопроводную систему, нажатием кнопки «Направление потока» переключить направление потока – прямое или обратное.

Во время смены направления потока, автоматически будет прервана связь с расходомером и появится экран поиска доступных устройств. Данная настройка занимает некоторое время (около двух минут), необходимо подождать и снова выполнить подключение к устройству.

После завершения процесса учет расхода начинает осуществляться в обратную сторону.

Для сохранения изменений параметров каналов необходимо нажать кнопку «Сохранить» (выноска 8).

Во вкладке «Система» (рисунок 46) можно менять параметры системы и расчетов, такие как:

- задержка сигнала в сенсорах (выноска 1);
- минимальная амплитуда сигнала сенсора (выноска 2);
- коэффициент фильтра (выноска 4);
- расход минимальный (выноска 5);
- расход максимальный (выноска 6);
- расход отсечки (выноска 7);
- скорость звука (выноска 8);
- возможность выбора типа фильтра Калман/Классический (выноска 4).

Рисунок 46 - Окно «Сервис «Система»

Для сохранения изменений параметров каналов необходимо нажать кнопку «Сохранить».

4.2.9.11 Окно «Тестирование»

При нажатии на строку «Тестирование» в меню настроек появляется окно, изображенное на рисунке 47. На экране «Тестирование» пользователь может выбрать, либо запустить имитацию расхода, либо если подключены интерфейсы, имитацию значения на интерфейсе.

÷	Тестирование
	٢
	Имитация расхода
	Интерфейсы не подключены

Рисунок 47 – Окно «Тестирование»

Отображаются только подключенные интерфейсы. Нажатие кнопки «Имитация расхода» открывает окно, изображенное на рисунке 48.

🔶 Имитация рас	схода	
Скорость потока (м/о	c) <u>1.0</u>	
		0
	Запустить	

Рисунок 48 – Окно «Имитация расхода»

Расход задаётся через скорость потока в м/с. Для запуска имитации необходимо нажать на кнопку «Запустить».

4.2.9.12 Окно «Время»

На экране время отображаются приборные дата и время, а также дата и время мобильного устройства. В случае расхождения пользователь может скорректировать приборное время в соответствии со временем мобильного устройства. Для этого нужно нажать на кнопку «Синхронизировать».

🔶 время		
Приборные дата и время:	7 февр. 2025 08:37:18	
Дата и время на телефоне:	7 февр. 2025 08:37:18	
		0
		\triangleleft
	Синхронизировать	

Рисунок 49 - Окно «Время»

4.2.9.13 Окно «Информация»

Вкладка «Информация» предназначена только для ознакомления с серийным номером прибора, текущими датой и временем, а также версией программного обеспечения расходомера и приложения и контрольной суммой.

🔶 Информация		
Серийный номер:	U23000000000001	
Версия ПО прибора:	1.73.1	
Версия ПО УРМ:	2.0.0	
Текущие дата и время:	1 февр. 2025 15:34:21	\bigcirc
Контрольная сумма:	38 1C	
		\bigtriangledown

Рисунок 50 – Окно «Информация»

4.2.9.14 Окно «Имитационная поверка»

При нажатии на строку «Имитационная поверка» в меню настроек появляется окно, изображенное на рисунке 51.

Рисунок 51 – Окно «Имитационная поверка»

55

В таблице 15 приведены разъяснения наименований параметров имитационной поверки. Таблица 15 – Параметры имитационной поверки

Наименование параметра	Описание	Выноска
Серийный номер	Серийный номер прибора, с которым установлено соединение.	1
Версия ПО	Версия ПО прибора.	2
Т.окр.среды(°С)	Температура окружающей среды.	3
Т.изм.среды(°С)	Температура измеряемой среды.	4
Барометр (Па)	Давление окружающей среды.	5
Психометр (%)	Относительная влажность воздуха окружающей среды.	6
СИ №	Номенклатурный номер средства измерения физической величины.	7,15
Vos pacч. (м/с)	Расчётная скорость звука, считается автоматически по формуле, исходя из температуры воды. Значение расчётной скорости звука можно также ввести вручную, если среда не вода.	8
Vos изм. (м/с)	Скорость звука измеренная прибором. Если расчётная и измеренная скорости звука не совпадают более чем на 0,2%, то условия допуска не будет выполнено и вместо галочки напротив Vos изм. (м/с) будет стоять крестик.	9
Расход (м ³ /ч)	Расход, фиксируемый прибором при фактическом нулевом расходе. Если он отличается от нуля более чем на 0,2%, то условие допуска не будет выполнено.	10
K. (1,2,3) Δt	Разница во времени пролёта сигнала вверх и вниз по канала для канала с соответствующим номером.	11
К. (1,2,3) С/Ш▲(дБ)	Отношение уровня сигнала к уровню шума вверх по каналу.	12
К. (1,2,3) С/Ш▼(дБ)	Отношение уровня сигнала к уровню шума вниз по каналу.	13
К. (1,2,3) Усил. (дБ)	Величина усиления сигнала.	14
10Гц, 100Гц, 1000Гц, 4000Гц	Кнопки для запуска имитации частоты на частотном выходе. При нажатии на кнопку прибор выдаст соответствующее значение частоты на частотном выходе. Это значение должно быть измерено и записано в соответствующую ячейку. Если отклонение не более 0,2%, то будет стоять галочка для соответствующего значения частоты.	16,17, 18,19

Чтобы получить заключение о статусе имитационной поверки нужно нажать на «ВЫПОЛНИТЬ» в правом верхнем углу экрана.

Чтобы сохранить результат поверки в виде PDF файла нужно нажать «СОХРАНИТЬ». Файл будет сохранён в папке «Загрузки».

Серийный номе	p: U23000000	800000		
Версия ПО: 1.5	7.1			
Т _{окр.среды} , ^О С	15	СИ №	Eertfgt	
Т _{изм.среды} , ^о С	15	СИ №	5544tt	
Барометр, Па	100	СИ №	44tgetu	
Психометр, %	80	СИ №	Tt455	
	Канал 1	Канал	2 Канал 3	Допуск
гаслод, м /ч. о,	000	HOUNDER TO	,,270	
	Канал 1	Канал	2 Канал 3	Допуск
∆t, %	0,00	0,02	0,00	1%
С/Ш1, дБ	42,2	46,1	44,7	Не менее 30 дБ
С/Ш↓, дБ	42,0	46,8	44,0	Не менее 30 дБ
Усиление, дБ	37,5	37,0	38,1	Не более 65 дБ
Частотный вых	ол			
СИ: Тt556				
10Fu: 10				
100Eu: 100				
1000Fu: 1000				
4000Fu: 4000				
Заключение: го	ден			
Дата/время: 7 февр. 2025 08:44				
	Поверитель:			

Рисунок 52 – Результат имитационной поверки

4.2.9.15 Окно «Журнал измерений»

При нажатии на строку «Журнал измерений» в меню настроек появляется окно, изображенное на рисунке 53.

\frown	÷	ЖУРНАЛ ИЗМЕРЕНИЙ				
(1)-		Весь период				-(3)
$(2)^{-}$		Количество последних	записей	5	_	
\bigcirc	Nº	Дата/Время	V+,м³	V-,м³	V,M³	
	1437 1438 1439 1440 1441	07.02.2025 06:00:00 07.02.2025 07:00:00 07.02.2025 08:00:00 07.02.2025 09:00:00 07.02.2025 10:00:00	0,035 0,035 0,035 0,035 0,035	1,319 1,320 1,321 1,322 1,323	-1,284 -1,285 -1,286 -1,287 -1,288	0
		Выгрузить :	журнал	Сохранить в фай	л	

Рисунок 53 - Окно «Журнал измерений»

Окно «Журнал измерений» позволяют выгрузить весь записанный расход по времени, а если требуется, то определенное количество последних записей.

Для того чтобы выгрузить весь список событий или измерений, необходимо поставить галочку напротив пункта «Весь период» (выноска 1).

В случае необходимости выгрузки только определенного количества последних записей следует поставить галочку напротив пункта «Количество последних записей» (выноска 2), а затем в разблокированном поле (выноска 3) ввести нужное количество записей.

Для отображения журнала на экране нужно нажать кнопку «Выгрузить журнал» (выноска 4). Журнал выгружается в форме таблицы, столбцы которой озаглавлены:

- № порядковый номер записи журнала.
- Дата/время метка времени, когда была сделана запись журнала.
- V+,м³ счётчик накопленного положительного объёма.
- V-,м³ счётчик накопленного отрицательного объёма.
- V,м³ счётчик накопленного итогового объёма.

После выгрузки журнала на экран становится доступна кнопка «Сохранить в файл» (выноска 5). Нажатие на кнопку сохраняет выгруженный журнал в виде файла расширением .csv в папку «Загрузки» вашего устройства.

4.3 Описание протокола LoRaWAN

4.3.1 Общая информация

Протокол реализован согласно LoRaWAN™ v1.0.3 Specification и ПНСТ «Протокол обмена для высокоемких сетей с большим радиусом действия и низким энергопотреблением».

4.3.2 Установка частотного плана

По умолчанию в расходомере установлен частотный план RU864-870 MHz ISM Band. Характеристики основных каналов представлены в таблице 16.

Таблица 16 – Частотный план RU864-870

Полоса, кГц	Канал	Частота, МГц	Скорость	Duty cycle
	Join 1	868,9		
125	Join 2	869,1		< 1%
	Rx channel	869,1	DRO	

Во вкладке «Каналы» окна «LoRaWAN». можно вручную установить произвольный частотный план. Значение частоты должно быть записано в Герцах. Галочками необходимо отметить активные частоты.

4.3.3 Установка ключей

Установка ключей выполняется во вкладках «Данные ОТАА» и «Данные ABP» окна «LoRaWAN».

В зависимости от способа активации в сети заполнить соответствующие поля адресов:

- для ОТАА необходимы Device EUI, Application EUI, Application Key;
- для ABP необходимы Device address, Apps Key, Nwks Key.

ВНИМАНИЕ! Если не выполнить сохранение ключей, то они не будут записаны в прибор!

4.3.4 Активация в сети

Активация в сети LoRaWAN может быть выполнена одним из двух способов: ABP или ОТАА.

Внимание! Чтобы выполнить активацию в сети сначала требуется провести запись ключей в расходомер.

После того, как произведены настройки частотного плана и загрузки ключей, активация в сети выполняется по нажатию кнопки «Активация» на вкладке «Настройки» окна «LoRaWAN».

4.3.5 Настройки

Чтобы провести настройку необходимо в приложении «УРМ» перейти на вкладку LoRaWAN и отметить галочками соответствующие поля.

Таблица 17 —	Настраиваемые	параметры
--------------	---------------	-----------

Параметр	Значение по умолчанию	Допустимые значения
Join mode	ΟΤΑΑ	OTAA/ABP
Confirm state	ON	ON/OFF
ADR	ON	ON/OFF
LBT	ON	ON/OFF
Join channel 1	ON	ON/OFF
Join channel 2	ON	ON/OFF
Join channel 3	ON	ON/OFF
Период связи	24 часа	1, 6, 12, 24 (часа)
Задержка 1	1 c.	1, 2, – 9 (c.)
Скорость	DRO	DR0 – DR5
Мощность	14 дБм	2, 5, 8, 11, 14 (дБм)

ВНИМАНИЕ! Если не выполнить сохранение настроек, то они не будут записаны в прибор.

4.3.6 Протокол обмена данными

Протокол обмена данными совместим с клиентским приложением IOT Vega Pulse от компании ООО «Вега-Абсолют».

Пакет с текущими показаниями передаётся на порт 2.

Таблица 18 – Пакет с текущими показаниями

Номер байта в сообщении	Описание поля	Значение
0	Тип пакета	0x01
1	Резерв	0x00
2	Резерв	0x00
3	Резерв	0x00
4	Состояние CRC	0 — CRC совпадает; 1 — CRC не совпадает
5		ХХ
6	Время формирования пакета	ХХ
7	(UTC unixtime)	хх
8		хх
9	Резерв	0x00
10	Резерв	0x00
11		ХХ
12	Текущие показания	XX
13	умноженные на 10 000)	ХХ
14		XX
15	Настройка – подтверждение пакетов (текущее состояние)	0x01 – ON, 0x00 – OFF
16	Настройка – период передачи данных (текущее состояние)	0x01 — 1ч, 0x02 — 6ч, 0x03 — 12ч, 0x04 — 24ч
17	Резерв	0x00
18	Часовой пояс в минутах.	0xF0 – 240 минут (UTC+04:00
19	Может быть отрицательным	Ижевск, Самара)

CRC — контрольная сумма метрологически значимой части программного обеспечения. Вычисляется по алгоритму CRC-16/CCITT-FALSE с полиномом 0x1021.

Пакет с настройками прибор принимает на порт 2.

Таблица 19 – пакет с настройками

Номер байта в сообщении	Описание поля	Значение
0	Тип пакета	0x01
1	Настройка – подтверждение пакетов	0x01 – ON, 0x00 – OFF
2	Настройка – период передачи данных	0x01 — 1ч, 0x02 — 6ч, 0x03 — 12ч, 0x04 — 24ч
3	Резерв	0x00
4	Резерв	0x00
5	Резерв	0x00

4.3.7 Корректировка времени

Протокол корректировки времени совместим с клиентским приложением IOT Vega TimeCorrector от компании ООО «Вега-Абсолют».

Раз в неделю прибор отправляет запрос на корректировку времени и получает ответ. Вид пакета с запросом корректировки времени представлен в таблице 20, вид пакета с ответом – в таблице 21.

Таблица 20 – Пакет с запросом корректировки времени

Номер байта в сообщении	Описание поля	Значение
0	Тип пакета	Oxff
1		XX
2	Время прибора на момент отправки сообщения (UTC unixtime)	ХХ
3		ХХ
4		ХХ

Пакет с корректировкой времени прибор принимает на порт 4.0

Таблица 21 – пакет с корректировкой времени

Номер байта в сообщении	Описание поля	Значение
0	Тип пакета	Oxff
1		ХХ
2		ХХ
3	Количество секунд, на которое нужно корректировать UTC unixtime (может принимать отрицательные значения)	ХХ
4		ХХ
5		ХХ
6		ХХ
7		ХХ
8		ХХ

По согласованию с заказчиком протокол обмена данными и протокол корректировки времени могут быть изменены.

Корректировка времени на приборе может быть запущена в ручном режиме, вне зависимости от расписания – см. п.4.2.9.6 (Настройки LORAWAN).

4.3.8 Управление логическим выходом

Пакет для управления логическим выходом принимается на порт 5.

Таблица 22 – Управление логическим выходом

Номер байта в сообщении	Описание поля	Значение
0	Назначение пакета	0x01 — управление логическим выходом
1	Функция	0x00— установить «0» на логическом выходе 0x01— установить «1» 0x02— запрос состояния логического выхода

Ответ от прибора передается на порт 5.

Таблица 23 – Данные о состоянии логического выхода

Номер байта в сообщении	Описание поля	Значение
0	Назначение пакета	0x01— состояние логического выхода
1	Данные	0x00 – на логическом выходе установлен «0» 0x01 – на логическом выходе установлена «1»

Управление логическим выходом на приборе происходит в следующей последовательности:

- 1) Прибор отправляет на сервер пакет с текущими показаниями
- 2) Сервер принимает пакет от прибора и отправляет команду управления логическим выходом
- 3) Прибор принимает пакет от сервера, выполняет команду смены состояния логического выхода.
- 4) После смены состояния логического выхода прибор отправляет на сервер пакет со статусом выхода.

4.4 Описание протокола M-Bus

4.4.1. Общая информация

Протокол реализован согласно требованиям стандартов EN 1434-3, EN 13757-2, EN 13757-3. Поддерживаются следующие функции: смена первичного адреса; смена идентификатора устройства; общий сброс; программный сброс; смена скорости обмена данными; настройка даты/времени; запрос текущих показаний.

Режим передачи данных полудуплексный, 8 бит данных сопровождается стартовым, стоповым битами и битом четности (Even).

Устройство не поддерживает механизм FCB, FCV битов, но принимает все пакеты независимо от состояния этих битов.

4.4.2 Адресация

Неинициализированные устройства имеют первичный адрес 0.

Вторичный адрес устройства имеет структуру, представленную в таблице 24.

Таблица 24 – Структура вторичного адреса

Название поля	Описание поля
IDNO	
IDN1	Japa zavož upuch znučeno o DCD donusto
IDN2	заводской номер приоора в всо формате
IDN3	
MID1	
MID2	код производителя
VERSION	Версия прибора
MEDIUM	Среда применения

4.4.3 Установка первичного адреса

Установка первичного адреса осуществляется по команде, приведённой в таблице 25.

Таблица 25 – Установка первичного адреса устройства

Название поля	Значение поля	Описание
START	0x68	
L1	0x06	
L2	0x06	
START	0x68	
С	0x53	
А	0x00	Старый первичный адрес
Cl	0x51	
DIF	0x01	
VIF	0x7A	
AD	0x01	Новый первичный адрес
CS	0x20	
END	0x16	

Ответ: 0xE5

Установка первичного адреса может быть проведена по первичному адресу 0xFD. Перед этим устройство должно быть переведено в режим вторичной адресации.

4.4.4 Перевод устройства в режим вторичной адресации

В таблице 25 приведён пример команды перевода устройства в режим вторичной адресации. К вторичному адресу устройства относятся поля IDN0, IDN1, IDN2, IDN3, MID0, MID1, VER, MED. При совпадении данных полей с вторичным адресом устройства, оно переходит в режим вторичной адресации.

Перевод в режим вторичной адресации всегда осуществляется только по первичному адресу 0xFD (253).

Таблица 26- Перевод устройства в режим вторичной адресации

Название поля	Значение поля	Описание	
START	0x68		
L1	0x0B		
L2	0x0B		
START	0x68		
С	0x53		
A	0xFD		
CI	0x52		
IDN0	0x78		
IDN1	0x56	Идентификационный номер	
IDN2	0x34	устройства в порядке LSB first	
IDN3	0x12		
MID0		Идентификатор	
MID1		производителя	
VER	0x01	Версия устройства	
MED	0x07	Среда (вода)	
CS	ХХ		
END	0x16		

Ответ: 0xE5

Если в отправленном сообщении одна из тетрад поля IDN равна 0xF, то устройство считает эту часть поля валидной. Если любой байт MID, VER, MED полей равен 0xFF, то эта часть поля считает валидной.

4.4.5 Смена идентификатора устройства

Чтобы сменить ID устройства (часть вторичного адреса), нужно отправить команду, представленную в таблице 26. Смена ID устройства может осуществляться как по его первичному адресу, так и по общему адресу устройств, с вторичной адресацией 0xFD (253) если оно было предварительно выбрано.

Таблица 27 – Смена ID устройства

Название поля	Значение поля	Описание	
START	0x68		
L1	0x09		
L2	0x09		
START	0x68		
С	0x53		
А	0x01	Первичный адрес 1	
CI	0x51		
DIF	0x0C		
VIF	0x79		
IDN0	0x11		
IDN1	0x22		
IDN2	0x33	новый по устроиства	
IDN3	0x44		
CS	0xD4		
END	0x16		

4.4.6 Сброс устройства

4.4.6.1 Общий сброс

В таблице 28 приведён пример команды на сброс устройства с первичным адресом 0x01. В случае успешного приёма сообщения устройством и выполнения сброса оно отправляет ответ 0xE5.

Сброс устройства подразумевает снятие метки выбора для вторичной адресации и обнуление счётчика обращений к устройству.

Таблица 28 – Сброс устройства

Название поля	Значение поля	Описание
START	0x10	
С	0x5B	
А	0x01	Адрес = 0x01
CS	0x5C	
END	0x16	

Ответ: 0xE5

4.4.6.2 Программный сброс

Устройство поддерживает программный сброс. В этом случае поле контрольной информации отправленного сообщения принимает значение 0x50. По команде программного сброса устройство обнуляет счётчик обращений. Пример команды программного сброса приведён в таблице 29.

Таблиц	а 29 — П	рограммный	сброс	устройства
1 4 6 7 17 1 4	a 20 ii	porpanninion	00000	,

Название поля	Значение поля	Описание
START	0x68	
L1	0x03	
L2	0x03	
START	0x68	
С	0x53	
А	0x01	
CI	0x50	
CS	0xA4	
END	0x16	

4.4.7 Конфигурация устройства

4.4.7.1 Установка скорости обмена данными

По умолчанию скорость обмена данными с прибором 2400 Бод. Устройство поддерживает следующие скорости обмена данными: 300 Бод (0xB8), 600 Бод (0xB9), 1200 Бод (0xBA), 2400 Бод (0xBB), 4800 Бод (0xBC), 9600 Бод (0xBD). Пример команды для смены скорости представлен в таблице 30.

Таблица 30 –	- Смена	скорости	обмена	данными
--------------	---------	----------	--------	---------

Название поля	Значение поля	Описание
START	0x68	
L1	0x03	
L2	0x03	
START	0x68	
С	0x53	
А	0x01	
CI	OxBD	Новая скорость 0xBD = 9600 Бод
CS	0x11	
END	0x16	

4.4.7.2 Установка даты/времени

Прибор хранит время в формате UTC unixtime. Запись времени в прибор должна производиться в указанном формате.

Дата/время передаются по протоколу в формате Туре F = Compound CP32: Date and Time. Пример команды для установки даты/времени представлен в таблице 31.

Таблица 31 – Установка даты/времени

Название поля	Значение поля	Описание	
START	0x68		
L1	0x09		
L2	0x09		
START	0x68		
С	0x53		
A	0xFD	Устройство предварительно должно быть выбрано для использования вторичной адресации и адреса 0xFD	
CI	0x51		
DIF	0x04		
VIF	0x6D		
DT0	0x31		
DT1	0x0A	18.03.2018 10:49	
DT2	0x72	(UTC unixtime = 1 521 370 140)	
DT3	0x03		
CS	0xC2		
END	0x16		

4.4.7.3 Вывод почасового архива

Прибор может отправлять по запросу почасовой архив за 12 часов. Чтобы получить архив необходимо отправить команду на установку почасового архива в качестве данных, выдаваемых по умолчанию. В команде также должен быть указан час, начиная с которого будут выведены показания за последующие 12 часов.

Таблица 32 — Команда на установку почасового архива в качестве данных, выдаваемых по умолчанию

Название поля	Значение поля	Описание
START	0x68	
L1	0x0A	
L2	0x0A	
START	0x68	
С	0x53	
А	0x01	
CI	0x51	
DIF	0x08	Manufacturer specific coding
VIF	0x7F	Manufacturer specific VIF
ROUT	0x32	0х32 – Почасовой архив
DT0	0x00	
DT1	0x0A	18.03.2018 10:00
DT2	0x72	(UTC unixtime = 1 521 367 200)
DT3	0x03	
CS	0xDD	
END	0x16	

Ответ: 0xE5

Далее для получения архива необходимо отправить стандартную команду запроса данных.
4.4.7.4 Запрос данных

Для получения данных с показаниями от устройства необходимо отправить следующее сообщение. Таблица 33— Запрос данных от устройства

Название поля	Значение поля	Описание
START	0x10	
С	0x5B	
А	0x01	
CS	0x5C	
END	0x16	

Ответ: сообщение с данными

4.4.7.5 Структура отправляемого сообщения

Таблица 34 – Текущие показания

Номер байта в сообщении	Название поля	Значение	Комментарий	
0	Start1	0x68		
1	L1	0x21		
2	L1	0x21		
3	Start2	0x68		
4	С	0x08		
5	А	0x01		
6	CI	0x72		
7	IDN0	0x78		
8	IDN1	0x56		
9	IDN2	0x34		
10	IDN3	0x12		
11	MID0	0x24		
12	MID1	0x40		
13	VER	0x01		
14	MED	0x07	Вода	
15	A_NUM	0x00		
16	STATUS	0x00	Информация об ошибках	
17	SIGO	0x00		
18	SIG1	0x00	пе используется	
19	DIF	0x04	Int32	
20	VIF	0x6D	Дата/время	

Таблица 34 (продолжение)

Номер байта в сообщении	Название поля	Значение	Комментарий
21	DT0	0x31	
22	DT1	0x0A	18.03.2018 10:49
23	DT2	0x32	(UTC unixtime = 1 521 370 140)
24	DT3	0x23	
25	DIF	0x04	Int32
26	VIF	0x13	м ³ ·10 ⁻³
27	VAL0	0x1A	
28	VAL1	0x51	
29	VAL2	0x06	413,97 M ²
30	VAL3	0x00	
31	DIF	0x04	Int32
32	VIF	0x3B	м ³ /ч·10 ⁻³
33	VALO	0xD5	
34	VAL1	0x04	
35	VAL2	0x00	12,37 M°/4
36	VAL3	0x00	
37	DIF	0x0D	Variable length
38	VIF	0xFF	VIF followed by manufacturer-specific VIFE
39	VIFE	0x01	Manufacturer-specific VIFE: logical out
40	LVAR	0x01	Length of data 1 byte
41	Manufacturer specific data	0x00	ОхОО – На логическом выходе установлен «О» ОхО1 – На логическом выходе установлена «1» ОхFF – логический выход не активен
42	CS	0xAA	
43	STOP	0x16	

Поле STATUS информирует об ошибках в приборе. Расшифровка значений, принимаемых полем, представлена в таблице 35.

таолица 35 — Расшифровка значении поля STATUS	Таблица 35 —	Расшифровка	значений	поля	STATUS
---	--------------	-------------	----------	------	---------------

Номер бита	Описание	
0	Не используется	
1	Не используется	
2	Не используется	
3	0 – CRC совпадает; 1 – CRC не совпадает	
4	0 — показания корректны; 1 — показания некорректны	
5	Не используется	
6	Не используется	
7	Не используется	

CRC – контрольная сумма метрологической значимой части программного обеспечения.

Использование расходомера

Таблица 36 – Структура сообщения с почасовым архивом

Номер байта в сообщении	Название поля	Значение	Комментарий	
0	Start1	0x68		
1	L1	0x9F		
2	L1	0x9F		
3	Start2	0x68		
4	С	0x08		
5	А	0x01		
6	CI	0x72		
7	IDN0	0x78		
8	IDN1	0x56		
9	IDN2	0x34		
10	IDN3	0x12		
11	MID0	0x24		
12	MID1	0x40		
13	VER	0x01		
14	MED	0x07	Water	
15	A_NUM	0x00		
16	STATUS	0x00	Информация об ошибках	
17	SIGO	0x00		
18	SIG1	0x00	пе используется	
19	DIF	0x04	Int32	
20	VIF	0x6D	Date/time	
21	DT0	0x00		
22	DT1	0x0A	18.03.2018 10:00	
23	DT2	0x72	(UTC unixtime =1 521 367 200)	
24	DT3	0x03		

Таблица 36 (продолжение)

Номер байта в сообщении	Название поля	Значение	Комментарий
25	DIF	0x04	Int32
26	VIF	0x13	м ³ ·10 ⁻³
27	VAL0	0x1A	
28	VAL1	0x51	Запись № 1
29	VAL2	0x06	413,97 m ³
30	VAL3	0x00	
151	DIF	0x04	Int32
152	VIF	0x6D	Date/time
153	DT0	0x00	
154	DT1	0x15	18.03.2018 21:00
155	DT2	0x72	(UTC unixtime = 1 521 406 800)
156	DT3	0x03	
157	DIF	0x04	Int32
158	VIF	0x13	m ³ ·10 ⁻³
159	VAL0	0x1A	
160	VAL1	0x51	Запись № 12
161	VAL2	0x06	413,97 m ³
162	VAL3	0x00	
163	CS		
164	STOP	0x16	

После отправки почасового архива прибор устанавливает в качестве данных, выдаваемых по запросу, текущие показания. Чтобы снова запросить почасовой архив необходимо повторно отправить команду установки почасового архива в качестве данных, выдаваемых по умолчанию, и повторить запрос данных от прибора.

4.4.7.6 Управление логическим выходом

Чтобы на логическом выходе прибора установить значение «0» или «1» необходимо отправить на прибор следующую команду.

Название поля	Значение поля	Описание
START	0x68	
L1	0x08	
L2	0x08	
START	0x68	
С	0x53	
А	0x01	
CI	0x51	
DIF	0x0D	Variablue length
VIF	0xFF	VIF followed by manufacturer- specific VIFE
VIFE	0x01	Manufacturer-specific VIFE: logical out
LVAR	0x01	Length of data 1 byte
Manufacturer specific data	0x00	0x00– Установить на логическом выходе «0» 0x01– Установить на логическом выходе «1»
CS	0x33	
END	0x16	

Таблица 37 – Установка значения «О» на логическом выходе

Чтобы установить на логическом выходе «1» необходимо отправить команду аналогичную представленной в таблице выше, значение поля Manufacturer specific data должно иметь значение «0х01». Значение поля CS соответственно должно быть пересчитано.

В случае если команда успешно принята, от прибора должен последовать ответ «0xE5».

Чтобы определить состояние логического выхода необходимо выполнить запрос текущих показаний.

Использование расходомера

4.5 Описание протокола Bluetooth[®] 4.1

Интерфейс реализован согласно требованиям стандарта Bluetooth[®] Core Specification Version 5.3. Интерфейс используется для дистанционного управления прибором с мобильного телефона с операционной системой Android 7 и выше.

4.6 Описание протокола Modbus RTU

4.6.1 Установление соединения по RS485

Чтобы установить соединение с конвертером сигналов по интерфейсу RS485, подготовьте ведущее устройство с соответствующими настройками по умолчанию.

Настройки Modbus RS485 представлены в таблице 38.

Таблица 38 – Настройки Modbus RS485

Параметр	Допустимые значения	Значения по умолчанию
Адрес ведомого	1247	1
Скорость передачи данных	600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 бит/сек.	19200 бит/сек.
Четность	None even odd	Контроль по четности
Формат данных	От старшего к младшему	От старшего к младшему
Задержка передачи сигнала	0 сек.	0 сек.
Стоповые биты	1 стоповый бит	1 стоповый бит

Все устройства, подключенные к шине, должны иметь одинаковую скорость передачи данных.

ИНФОРМАЦИЯ! Очень важно обеспечить, чтобы во время процесса адресации устройств не было двух устройств с одинаковым адресом. В противном случае может возникнуть анормальное поведение общей последовательной шины. Тогда ведущее устройство не сможет установить связь со всеми существующими ведомыми устройствами на шине.

4.6.2 Протокол Modbus

Формат кадра RTU

При использовании формата RTU (дистанционный терминал) данные передаются в виде 8-битовых двоичных символов. Специальные символы для определения начала и конца кадра в сообщении отсутствуют.

Форма кадра запроса представлена в таблице 39.

Таблица 39 – Форма кадра запроса

Функция команды	Формат кадра	Описание
Период молчания	3,5 х Т	Каждой передаче данных предшествует период молчания, равный 3,5хТ, где Т – это время передачи одного символа. Оно может быть вычислено, исходя из скорости передачи данных, например, T = 572 мкс. при 19,2 кбит/сек.
Адрес ведомого	8 бит	Это однобайтовый адрес ведомого устройства, который передаётся первым и должен быть в диапазоне 1247.
Функциональный код	8 бит	Это восьми-битовый код в диапазоне 1255, хотя существует только 126 функций, в то время как коды 129255 обозначают состояние ошибки. Состояние ошибки появляется, когда адресуемое ведомое устройство не воспринимает команду, в этом случае оно отвечает функциональным кодом + 128, т.е. его старший бит установлен на 1.
Начальный адрес регистра	16-битный адрес	Начальный адрес регистра: для команды запроса, которая запрашивает данные для возврата, это поле будет содержать 16-битный начальный адрес регистра, подлежащего возврату. Например: для доступа к входному регистру 30006 начальный адрес регистра должен быть 30006 = 0x7536.
Количество регистров	16 бит	Это поле содержит количество регистров, подлежащих возврату, независимо от их размера в битах.
Контрольная циклическая сумма	16 бит	Это поле содержит 16-битную контрольную циклическую сумму, которая вычисляется из всех битов данных, из которых состоят байты сообщения. Порядок байт в CRC от младшего к старшему.

Представление данных

"Регистр" является 16-битным целым числом, передаваемым в виде двух 8-битных символов. Используя различные "регистры", Modbus может передавать значения более высокой точности, например, 32-битные числа "с плавающей запятой" или 64-битные "FIX32".

Значения передаются в порядке байт от старшего к младшему.

Таблица 40 – 16-битные значения

Регистр	Старший	Младший
Ν	Старший байт	Младший байт

Таблица 41 – 32-битные значения

С плавающей запятой (с одинарной точностью, стандарт IEEE 754)				
Старший байт Младший байт+1 Младший байт+1 Младший байт				
SEEEEEE	ЕММММММ	МММММММ	МММММММ	

Где S = знак, E = показатель степени, M = мантисса/дробная часть

Таблица 42 – 64-битные значения

FIX32		
Регистр	Старший	Младший
Целая часть числа		
Ν	Старший байт	Младший байт
N+1	Младший байт+1	Младший байт+2
Дробная часть числа		
N+2	Старший байт	Младший байт
N+3	Младший байт+1	Младший байт+2

Регистры N, N+1 отвечают за целую часть числа, N+2, N+3 за дробную.

Для того чтобы привести значение FIX32 к формату Double (число двойной точности) необходимо взять 64-битное значение как long integer и умножить на 2⁻³².

Адреса регистров Modbus

Конвертер сигналов поддерживает четыре типа ссылок на данные, которые связаны с рядом perистров Modbus.

Таблица 43 – Адреса регистров

Диапазон адресов	Первичные таблицы	Права доступа
09999	Регистры флагов	Запись
3000039999	Регистры ввода	Чтение
5000065535	Регистры хранения	Чтение + запись

Поддерживаемые функциональные коды

Таблица 44 – Поддерживаемые функциональные коды

Функциона	Наимоцерацие		
Десятичный	Шестнадцатеричный	Паименование	
03	0x03	Чтение регистра хранения	
04	0x04	Чтение регистра ввода	
05	0x05	Запись значения одного флага	
16	0x10	Запись значений в несколько регистров хранения	

Использование расходомера

Сообщения об ошибках

Когда конвертер сигналов обнаруживает ошибку в запросах, полученных в надлежащим образом отформатированной телеграмме, он посылает ответ в виде сообщения об ошибке. Ответная телеграмма с сообщением об ошибке выглядит следующим образом:

Адрес Функциональный код	Код ошибки	Контрольная циклическая сумма младшая	Контрольная циклическая сумма старшая
--------------------------	------------	---	---

Старший бит запрашиваемого функционального кода в ответной телеграмме получает соответствующее значение (добавляется 0d128 / 0x80), которое свидетельствует о том, что обнаружена ошибка. Например, если была обнаружена ошибка в запросе функции 1, то функциональный код в ответе будет 0x81 (0d129).

Таблица 45 – Коды ошибок

Код ошибки	Наименование	Смысловое содержание
01	Недопустимая функция	Запрашиваемый функциональный код не поддерживается или не действителен из-за текущих настроек устройства.
02	Недопустимый адрес данных	Запрашиваемый регистр не действителен или количество запрашиваемых регистров недостоверно.
03	Недопустимое значение данных	Записываемые данные недействительны для указанного регистра.

В случае возникновения ошибок, возникающих из-за сбоев связи (ошибки контрольной циклической суммы, ошибки чётности и т.п.), ответ о них не приходит, так как данные в полученной телеграмме считаются недостоверными.

Параметры

Контроль устройства

"Контроль устройства" предлагает некоторые основные функциональные возможности для управления конвертером сигналов. Для этого интерфейс Modbus предусматривает регистры флагов, доступ к которым обеспечивается с помощью функционального кода Modbus "Запись одного регистра флагов" (0х05).

Таблица 46 – Адреса регистров флагов

Функциональный код Modbus "Запись одного регистра флагов" (0x05)				
Адрес регистра флагов	Наименование	Описание		
1000 (0x03E8)	Принять изменения	Сохраняет и принимает последние изменения конфигурации		
1001 (0x03E9)	Отменить изменения	Отменяет все изменения конфигурации, выполненные с момента последнего использования «Принять изменения»		

Значения измеряемых параметров

Таблица 47 – Значения измеряемых параметров

Функциональные коды Modbus "Чтение регистров ввода" (0x04)					
Регистр ввода	Наименование	Тип	Количество регистров	Единицы измерения	
30000 (0x7530)	Скорость потока	С плавающей запятой	2	[м/сек.]	
30002 (0x7532)	Объемный расход	С плавающей запятой	2	[M³/ч.]	
30004 (0x7534)	Отрицательный накопленный объем	FIX32	4	M ³	
30008 (0x7538)	Положительный накопленный объем	FIX32	4	M ³	
30012 (0x753C)	Суммарный накопленный объем	FIX32	4	M ³	

Параметры канала связи Modbus RS485

Таблица 48 – Параметры канала связи Modbus RS485

Функциональные коды Modbus "Чтение регистров хранения" (0x03) и "Запись нескольких регистров" (0x10)					
Регистр хранения	Наимено- вание	Описание	Тип	Коли- чество регистров	Значения
50000 (0xC350)	Адрес ведомого	Адрес ведомого устройства Modbus	Байт	1	0x00010x00F7 (1247)
50001 (0xC351)	Скорость передачи данных	Скорость передачи данных для канала связи Modbus RS485 в [бит/сек.]	Байт	1	Ох0001 (600 бит/сек.) Ох0002 (1200 бит/сек.) Ох0003 (2400 бит/сек.) Ох0004 (4800 бит/сек.) Ох0005 (9600 бит/сек.) Ох0006 (19200 бит/сек.) Ох0007 (38400 бит/сек.) Ох0008 (57600 бит/сек.) Ох0009 (115200 бит/сек.)
50002 (0xC352)	Контроль четности		Байт	1	0x0000 (отсутствует контроль четности), 0x0001 (контроль четности), 0x0002 (контроль нечетности), 0x0003 (бит четности всегда 0), 0x0004 (бит четности всегда 1)

4.6.3 Сохранение и восстановление конфигурационных параметров

Для изменения конфигурационных параметров необходимо записать значения (функциональный код 0x10) в соответствующие регистры хранения. После этого прибор запоминает, но не применяет установленные параметры.

Чтобы применить или отменить новые параметры следует записать 0xFF00 в соответствующий регистр флагов (функциональный код 0x05). Если значение 0xFF00 будет записано в регистр флагов с адресом 0x03E8, то записанные ранее настройки будут применены. Если значение 0xFF00 будет записано в регистр флагов с адресом 0x03E9, то записанные в память, но не примененные настройки будут удалены из памяти.

4.6.4 Поддерживаемые функциональные коды Modbus

Функциональный код 0х03: чтение регистров хранения

Таблица 49 – Чтение регистров хранения

Запрос		Ответ	
Функциональный код	0x03	Функциональный код	0x03
Адрес первого регистра. Старший байт	0xC3	Количество байтов	0x06
Адрес первого регистра. Младший байт	0x50	Значение регистра 0xC350. Старший байт	0x00
Количество регистров. Старший байт	0x00	Значение регистра 0xC350. Младший байт	0x01
Количество регистров. Младший байт	0x03	Значение регистра 0xC351. Старший байт	0x00
		Значение регистра 0xC351. Младший байт	0x06
		Значение регистра 0xC352. Старший байт	0x00
		Значение регистра 0xC352. Младший байт	0x01

Функциональный код 0х04: чтение регистра ввода

Таблица 50 – Чтение регистра ввода

Запрос		Ответ	
Функциональный код	0x04	Функциональный код	0x04
Адрес первого регистра. Старший байт	0x75	Количество байтов	0x02
Адрес первого регистра. Младший байт	0x32	Значение регистра 0x7532. Старший байт	0x3F
Количество регистров. Старший байт	0x00	Значение регистра 0x7532. Младший байт	0xC0
Количество регистров. Младший байт	0x01		

Функциональный код 0х05: запись одного регистра флагов

Таблица 51 – Запись одного регистра флагов

Запрос		Ответ	
Функциональный код	0x05	Функциональный код	0x05
Адрес первого регистра. Старший байт	0x03	Адрес первого регистра. Старший байт	0x03
Адрес первого регистра. Младший байт	0xE8	Адрес первого регистра. Младший байт	0xE8
Значение. Старший байт.	0xFF	Значение. Старший байт.	OxFF
Значение. Младший байт	0x00	Значение. Младший байт	0x00

Функциональный код 0х10: запись нескольких регистров хранения

Таблица 52 – Запись нескольких регистров хранения

Запрос		Ответ	
Функциональный код	0x10	Функциональный код	0x10
Адрес первого регистра. Старший байт	0xC3	Адрес первого регистра. Старший байт	0xC3
Адрес первого регистра. Младший байт	0x51	Адрес первого регистра. Младший байт	0x51
Количество регистров. Старший байт	0x00	Количество записанных регистров. Старший байт	0x00
Количество регистров. Младший байт	0x02	Количество записанных регистров. Младший байт	0x02
Количество байтов	0x04		
Значение регистра 0xC351. Старший байт.	0x00		
Значение регистра 0xC351. Младший байт.	0x05		
Значение регистра 0xC352. Старший байт.	0x00		
Значение регистра 0xC352. Младший байт.	0x02		

Сообщение об ошибке

Таблица 53 – Сообщение об ошибке

Ошибка	
Функциональный код	Функциональный код из запроса + 0х80
Код ошибки	0x01/0x02/0x03

5 Техническое обслуживание

5.1 Общие сведения

В обычных условиях эксплуатации и при надлежащем применении расходомер не требует какоголибо специального обслуживания. В процессе стандартной проверки состояния расходомеров, необходимо:

- визуально осмотреть расходомер;
- проверить корпус, кабельные вводы и линии питания на отсутствие повреждения и следов коррозии;
- проверить соединения трубопровода на отсутствие утечки.

5.2 Меры безопасности

Источниками опасности при эксплуатации расходомеров являются электрический ток и измеряемая среда с температурой до 150°С, находящаяся под давлением.

Безопасность эксплуатации расходомеров обеспечивается:

- прочностью и герметичностью преобразователя сигналов и ПР расходомеров;
- изоляцией и гальванической развязкой электрических цепей, входящих в состав приборов;
- надежным креплением изделий в состав расходомеров.

По способу защиты человека от поражения электрическим током расходомеры относятся к классу 01 по ГОСТ 12.2.007.0-75.

При эксплуатации расходомеров необходимо соблюдать общие требования безопасности по ГОСТ 12.2.007.0-75 «Правила техники безопасности электроустановок потребителем» для электроустановок напряжением до 1000 В.

Расходомеры должны обслуживаться персоналом, имеющим классификационную группу по технике безопасности не ниже II в соответствии с «Правилами техники безопасности при эксплуатации электроустановок потребителями» для электроустановок напряжением до 1000 В.

Устранение дефектов, замена компонентов расходомеров, должны производиться при отключенном питании. Ремонт ПРП производится после сброса давления рабочей среды и обеспечения условий инструкций безопасности, действующих на объектах.

Замена, присоединение и отсоединение ПРП от трубопроводной магистрали должно проводиться при полном отсутствии внутреннего давления, при установке входной и выходной задвижек измерительной линии в положение «закрыто» и обеспечении инструкций безопасности, действующих на объектах.

5.3 Очистка поверхностей расходомера, контактирующих со средой

Отключите электропитание прибора. Избегайте применения растворителя. Не оставляйте остатки продукта.

Для очистки расходомера:

- используйте мягкую ткань, увлажненную умеренным количеством моющего средства и воды;
- не распыляйте напрямую чистящее средство на прибор, когда передняя и/или задняя крышки сняты;
- не используйте для очистки струи воды, находящейся под высоким давлением;
- не применяйте для чистки средства, содержащие бензин, бензол, толуол, ксилол, ацетон и подобные растворители;
- не используйте абразивные средства для очистки любой части прибора.

Техническое обслуживание

5.4 Возможность получения запасных частей

Изготовитель гарантирует наличие функционально совместимых запасных частей для каждого расходомера или для каждого важного блока расходомера в течение трех лет после поставки последней изготовленной партии прибора.

Данное положение действует только тогда запасных частей, которые подлежат износу в рамках эксплуатации по назначению.

5.5 Возможность оказания сервисных услуг

В поддержку заказчика изготовитель предлагает по истечении гарантийного срока ряд услуг по сервисному обслуживанию. В данные услуги входят ремонт, калибровка, техническая поддержка и обучение.

5.6 Указания о поверке расходомера

Расходомер при эксплуатации подлежит поверке согласно с методикой поверки, установленной для них по результатам испытания в целях утверждения типа.

5.7 Возврат расходомера изготовителю

5.7.1 Общая информация

Данный расходомер был изготовлен и протестирован согласно требованиям технической документации. При установке и эксплуатации в соответствии с данным руководством расходомер будет полностью функционален.

ВНИМАНИЕ! Если все же потребуется вернуть расходомер с целью контроля или ремонта, то обязательно обратите внимание на следующие пункты:

• На основе правовых норм по защите окружающей среды и труда изготовитель рассматривает, тестирует и ремонтирует только те возвращенные расходомеры, которые контактировали с продуктами, не несущими опасности для персонала и окружающей среды;

• Изготовитель может провести техническое обслуживание расходомера только в том случае, если прилагается заполненный Формуляр для возврата расходомера, подтверждающий отсутствие опасности.

— Техническое обслуживание —

5.7.2 Формуляр для возврата прибора

Организация:	Адрес:								
Отдел:	ФИО:								
Телефон контактного лица:	Факс и/или Email:								
Наименование и серийный номер прибора:									
(указать наименование прибора и его серийный номер)									
Номер договора поставки оборудования и дата поставки прибора:									
(указать номер договора и дату поставки прибора)									
Дата ввода в эксплуатацию:									
(указать дату ввода в эксплуатацию прибора)									
Дата выявления дефекта и краткое описание дефекта:									
(указать дату выявления дефекта и описать дефект)									
Настоящим подтверждаем, что:									
- прибор не использовался в опасных средах: радиоактивных, токсичных, едких, огнеопасных и любые оставшиеся в нем вещества и субстанции не представляют опасности для человека и окружающей среды.									
Дата:	Подпись:								
Печать:									

Техническое обслуживание

5.8 Процедура по аварийному отключению

При возникновении аварийной ситуации расходомер должен быть немедленно отключен от сети питания (для расходомеров с внешним электропитанием). Далее необходимо незамедлительно принять меры по сбросу давления рабочей среды внутри трубопровода, на котором установлен расходомер.

Под аварийными ситуациями следует принимать следующее:

- Давление в трубопроводе поднялось выше рабочего и не снижается, несмотря на принятые персоналом меры;
- Температура среды поднялась выше допустимой, несмотря на принятые персоналом меры;
- В расходомере и его элементах, работающих под давлением, обнаружены разрушения, течи, видимые деформации;
- Возникновение пожара, непосредственно угрожающего расходомеру, находящемуся под давлением;
- Повреждение кабеля сети питания, кабеля межблочного, заземляющего проводника;
- Нарушение герметичности корпусов расходомера;
- Условия, указанные в инструкциях безопасности, действующих на объектах.

5.9 Программное обеспечение

5.9.1 Общие данные

Встроенное программное обеспечение (ПО) выполняет функции расчета объемного расхода, объема, скорости потока, скорости звука в измеряемой среде, определение направления потока, вывод информации на интерфейсы связи, а также мобильное приложение «УРМ», осуществляющее работу расходомера. Мобильное приложение «УРМ» можно скачать по QR-коду, размещенному на маркировочной табличке и паспорте расходомера.

5.9.2 Принцип действия

Измеряемая физическая величина преобразуется устройством первичного преобразования в набор данных. Полученные данные передаются в блок обработки данных, который производит необходимые вычисления. Полученные в результате вычислений показания передаются по каналам связи на внешние устройства и системы.

Рисунок 54 – Структурная схема принципа работы измерений

Техническое обслуживание

5.9.3 Блок обработки данных

После получения набора данных от первичного преобразователя проводится их анализ. Выявляются ошибки, и принимается решение о коррекции параметров первичного преобразователя. После анализа данные используются для вычисления скорости потока. Функция вычисления скорости потока защищена контрольной суммой. Перед запуском этой функции проводится проверка её целостности.

Вычисление скорости потока осуществляется по формуле:

$$V_m = G_k \times \frac{l_p}{2} \times \frac{\Delta t}{t_{up} t_{dn}}$$

Где V_m - средняя скорость потока жидкости;

G_k — постоянная расходомера (калибровочная константа). Значение G_k определяется при проведении калибровки расходомера.

t_{up} и t_{dn} — время прохождения ультразвуковой волны против и по течению соответственно.

Преобразование в объёмный расход осуществляются по формуле:

$$Q = V_m \times S$$

Где Q — объёмный расход;

S — площадь поперечного сечения трубы.

5.9.4 Доступ к конфигурации

Для предотвращения несанкционированного доступа параметры конфигурации защищены паролем.

5.9.5 Встроенное программное обеспечение

Расходомеры имеют встроенное программное обеспечение (далее ПО), устанавливаемое в электронный блок ПС. Встроенное ПО устанавливается в энергонезависимую память электронного блока ПС предприятием-изготовителем с помощью программатора. Доступ к нему после установки невозможен. ПО выполняет функции обработки измерительной информации, преобразования ее в нормированные сигналы.

Конструкция расходомеров исключает возможность несанкционированного влияния на ПО и измерительную информацию. Идентификационные данные встроенного ПО представлены в таблице 54.

Таблица 54 – Идентификационные данные программного обеспечения

Идентификационные данные	Значение						
Идентификационное наименование ПО	УРМ						
Номер версии ПО	X.X.1						
Обозначение Х в записи номера версии ПО заменяет символы, отвечающие за метрологически							

Обозначение Х в записи номера версии ПО заменяет символы, отвечающие за метрологически незначимую часть.

Уровень защиты от непреднамеренных и преднамеренных изменений в соответствии с Р 50.2.077-2014:

- «высокий» при пломбировке преобразователя сигналов;
- «средний» без пломбировки преобразователя сигналов.

___ Хранение

6 Хранение

- Расходомеры должны храниться в упаковке предприятия-изготовителя в капитальных помещениях в условиях 2 по ГОСТ 15150, со следующим уточнением по температуре хранения от минус 50 °C до плюс 70 °C, не более 1 года.
- Расходомеры, извлечённые из транспортной тары, должны храниться на стеллажах в отапливаемых помещениях в условиях хранения 1 по ГОСТ 15150, с температурой хранения от плюс 5 °С до плюс 40 °С, не более 1 года.
- Храните прибор в сухом, защищенном от пыли, месте.
- Избегайте длительного нахождения под прямыми солнечными лучами.
- Храните прибор в оригинальной упаковке.

7 Транспортирование

Условия транспортирования расходомера в части воздействия климатических факторов внешней среды – согласно условиям хранения 5 по ГОСТ 15150-69.

Транспортирование расходомеров должно производиться в соответствии с действующими на данном виде транспорта правилами перевозок грузов, утвержденными в установленном порядке.

Расходомер транспортируется в упаковке предприятия-изготовителя всеми видами крытых транспортных средств.

Транспортирование расходомеров воздушным транспортом допускается только в герметизированных и отапливаемых отсеках.

ВНИМАНИЕ! В комплектации расходомеров с интерфейсом LoRaWAN предусмотрены литиевые батареи в количестве двух штук с соединительным разъемом. Транспортирование батарей воздушным транспортом не допускается.

Размещение и крепление в транспортных средствах упакованных расходомеров должны обеспечивать их устойчивое положение, исключать возможность ударов друг о друга, а также о стенки транспортных средств.

Требования к погрузочно-разгрузочным работам:

- для транспортировки используйте стропы, которые следует располагать вокруг обоих технологических подсоединений;
- при транспортировке нельзя поднимать расходомеры за корпус преобразователя сигналов;
- не используйте транспортировочные цепи, а только такелажные ремни, так как они могут повредить корпус.
- при наличии рым-болтов на корпусе ПРП крепление строп осуществлять за них

ОСТОРОЖНО! Имеется опасность повреждения по причине неустойчивости расходомера. Центр тяжести расходомера часто находится выше точки подвеса строп. При транспортировке избегайте ненамеренного соскальзывания или вращения расходомера.

Способы правильного и неправильного крепления строп при транспортировке прибора представлены на рисунке 55.

Рисунок 55 — Способы правильного и не правильного крепления строп при транспортировке прибора

96

8 Утилизация

Материалы и комплектующие, используемые для изготовления расходомера, не оказывают вредного воздействия на природу. Требования обеспечиваются схемотехническими решениями и конструкцией прибора.

Особые требования к утилизации прибора не требуются.

Утилизацию следует осуществлять в соответствии с действующими законодательными актами.

Список используемых сокращений

- ТУ технические условия
- ПРП преобразователь расхода
- ПС преобразователь сигналов
- БП блок питания
- ПП пьезоэлектрические преобразователи
- ПО программное обеспечение
- ПК персональный компьютер
- Ду диаметр условного прохода
- МП методика поверки
- РЭ руководство по эксплуатации
- ЭД эксплуатационная документация

 	 	·	 							

Подлежит изменениям без предварительного уведомления ООО «ГРУППА КОМПАНИЙ УЛЬТРА» Тел.: +7 (499) 519-61-90 E-mail: office@ultra-gk.ru

www.ultra-gk.ru